船舶海洋与建筑工程

改进LSTM神经网络在极短期波浪时序预报中的应用

展开
  • 1.上海交通大学 海洋工程国家重点实验室; 船舶海洋与建筑工程学院,上海 200240
    2.上海船舶运输科学研究所 航运技术与安全国家重点实验室,上海 200135
尚凡成(1998-),硕士生,从事船海工程水动力学研究.

收稿日期: 2021-11-02

  录用日期: 2022-08-10

  网络出版日期: 2023-03-28

Application of Improved LSTM Neural Network in Time-Series Prediction of Extreme Short-Term Wave

Expand
  • 1. State Key Laboratory of Ocean Engineering; School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Key Laboratory of Navigation and Safety Technology, Shanghai Ship and Shipping Research Institute, Shanghai 200135, China

Received date: 2021-11-02

  Accepted date: 2022-08-10

  Online published: 2023-03-28

摘要

高效准确的极短期预报对实海况下船海结构物的施工作业安全意义重大.由于海浪的随机性,短期预报往往使用时间序列分析进行,近年来神经网络特别是长短期记忆(LSTM)神经网络在时间序列分析上预报能力强.基于此,提出一种结合生成式对抗思想的LSTM改进形式,在神经网络中嵌入频域特性等的先验知识,实现时频域信息耦合预报.经实验测试可知,该方法预报精度优于传统时序分析方法和LSTM神经网络结果,适用于极短期时序预报,有助于实现更好的船舶操纵控制.

本文引用格式

尚凡成, 李传庆, 詹可, 朱仁传 . 改进LSTM神经网络在极短期波浪时序预报中的应用[J]. 上海交通大学学报, 2023 , 57(6) : 659 -665 . DOI: 10.16183/j.cnki.jsjtu.2021.438

Abstract

Efficient and accurate extreme short-term prediction is of great significance for the safety of ship and marine structures in actual sea waves. Due to the stochastic of actual sea waves, short-term prediction always uses time series analysis. The neural networks, particularly long short-term memory (LSTM) neural networks, have received increasing attention for their powerful forecasting capability in time series analysis. Based on this, an improved form of LSTM combining generative adversarial ideas is proposed, in which the frequency domain characteristics are embedded in the neural network to achieve coupled time-frequency domain information forecasting. The experimental test shows that the forecasting accuracy of this method is better than the results of traditional time series analysis methods and the LSTM neural network, and it is suitable for extreme short-term time series prediction for better ship maneuvering.

参考文献

[1] 朱仁传, 缪国平. 船舶在波浪上的运动理论[M]. 上海: 上海交通大学出版社, 2019: 179-186.
[1] ZHU Renchuan, MIAO Guoping. The theory of ship motion in waves[M]. Shanghai: Shanghai Jiao Tong University Press, 2019: 179-186.
[2] 刘煜城. 基于深度学习的船舶运动极短期预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[2] LIU Yucheng. Research on short-term forecasting method of ship motion based on deep learning[D]. Harbin:Harbin Engineering University, 2019.
[3] YUMORI I. Real time prediction of ship response to ocean waves using time series analysis[C]// Oceans. Boston,USA: IEEE, 2010: 1082-1089.
[4] GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.
[5] DUAN W Y, HAN Y, HUANG L M, et al. A hybrid EMD-SVR model for the short-term prediction of significant wave height[J]. Ocean Engineering, 2016, 124: 54-73.
[6] LI G Y, KAWAN B, WANG H, et al. Neural-network-based modelling and analysis for time series prediction of ship motion[J]. Ship Technology Research, 2017, 64(1): 30-39.
[7] 张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11): 1413-1421.
[7] ZHANG Biao, PENG Xiuyan, GAO Jie. Ship motion attitude prediction based on ELM-EMD-LSTM integrated model[J]. Journal of Ship Mechanics, 2020, 24(11): 1413-1421.
[8] 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50(9): 1281-1302.
[8] ZHANG Bo, ZHU Jun, SU Hang. Toward the third generation of artificial intelligence[J]. Scientia Sinica (Informationis), 2020, 50(9): 1281-1302.
[9] 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020: 129-145, 180-186.
[9] QIU Xipeng. Neural networks and deep learning[M]. Beijing: China Machine Press, 2020: 129-145, 180-186.
[10] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332.
[10] WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332.
[11] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[12] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2962-2971.
[13] 何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565.
[13] HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced learning of generative adversarial network based on latent posterior[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565.
[14] TUKEY C J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301.
[15] 于宁莉, 易东云, 涂先勤. 时间序列中自相关与偏相关函数分析[J]. 数学理论与应用, 2007, 27(1): 54-57.
[15] YU Ningli, YI Dongyun, TU Xianqin. Analyze auto-correlations and partial-correlations function in time series[J]. Mathematical Theory and Applications, 2007, 27(1): 54-57.
文章导航

/