沉垫基础在水平和斜坡黏土海床上的竖向承载特性研究
收稿日期: 2021-11-16
修回日期: 2021-12-17
录用日期: 2022-08-10
网络出版日期: 2023-03-28
基金资助
国家自然科学基金面上项目(51678360);上海市青年科技英才杨帆计划(20YF1418500)
Vertical Bearing Characteristics of Mat Foundation on Horizontal and Sloping Clay Seabed
Received date: 2021-11-16
Revised date: 2021-12-17
Accepted date: 2022-08-10
Online published: 2023-03-28
准确评估沉垫基础在黏土海床上的竖向承载力对自升式平台沉垫基础在海洋环境中的安全作业具有重要意义.结合离心机试验与欧拉-拉格朗日法(CEL)大变形数值计算方法研究沉垫基础在水平和斜坡黏土海床上的竖向承载特性,首先通过T-bar贯入试验得到土体的不排水抗剪强度沿深度的分布规律,然后进行两种底面形状的沉垫基础在软黏土海床上的竖向承载特性离心机试验,最后结合CEL大变形数值方法对沉垫基础的竖向承载特性进行探讨,分析沉垫基础在不同坡度海床上的承载力和土体位移变化.研究结果表明,沉垫基础荷载-位移曲线没有明显峰值,正方形基础承载力略高于长方形基础;在基础入泥过程中,土体超孔压发展规律与荷载-位移曲线的变化规律基本一致,竖向荷载大部分由超孔压承担;随着海床坡度增大基础承载力逐渐减小且基础底部土体有向坡角方向滑移的趋势,可能导致海床发生滑移破坏,工程中应尽量避免在坡度较大的海床区域作业.
严远忠, 张琪, 叶冠林, 孙波, 刘国军 . 沉垫基础在水平和斜坡黏土海床上的竖向承载特性研究[J]. 上海交通大学学报, 2023 , 57(6) : 700 -708 . DOI: 10.16183/j.cnki.jsjtu.2021.459
Accurate evaluation of the vertical bearing capacity of the mat foundation on the clay seabed is of great significance for the safe operation of the mat-supported jack-up platform in the marine environment. Combining the centrifuge test and the coupled Eulerian-Lagrangin (CEL) large deformation numerical calculation method, the vertical bearing characteristics of mat foundation on horizontal and sloping clay seabed were studied. First, the distribution law of undrained shear strength of soil along the depth was obtained through the T-bar penetration test. Then, the vertical bearing characteristics of two kinds of bottom mat foundations on soft clay seabed were tested. Finally, the vertical bearing characteristics of the mat foundation were discussed in combination with the numerical method of CEL large deformation, and the bearing capacity and soil displacement changes of the foundation on different inclination seabed were analyzed. The results show that the foundation load displacement curve has no obvious peak value, and the bearing capacity of the square foundation is slightly higher than that of the rectangular foundation. The development law of soil excess pore pressure is basically consistent with the change law of bearing capacity in the process of foundation entering the sea bead, and most of the vertical stress is borne by the excess pore pressure. The foundation bearing capacity gradually decreases as the slope of the seabed increases, and the soil below the foundation tends to slip in the direction of the slope angle, which may lead to slip damage of the seabed. Therefore, operation in the seabed area with a large slope should be avoided in actual practice.
[1] | 徐宏, 徐晓臻, 黄伟, 等. 广东某近海风电场海床表层土物理力学性质[J]. 土工基础, 2022, 34(6): 715-719. |
[1] | XU Hong, XU Xiaozhen, HUANG Wei, et al. Physical mechanical properties of seabed topsoil of an offshore wind farm in Guangdong[J]. Soil Engineering and Foundation, 2022, 34(6): 715-719. |
[2] | 郑敬宾, 胡畔, 王栋. 复杂土层中自升式平台桩靴安装穿刺预测[J]. 海洋工程, 2018, 36(3): 123-130. |
[2] | ZHENG Jingbin, HU Pan, WANG Dong. Prediction of punch-through during spudcan installation in complex soil profiles[J]. The Ocean Engineering, 2018, 36(3): 123-130. |
[3] | 晁世方, 李加坤. 2500 t沉垫自升式风电安装平台稳性分析[J]. 船舶工程, 2020, 42(12): 1-4. |
[3] | CHAO Shifang, LI Jiakun. Stability analysis of 2 500 t self-elevating wind turbine installation unit with mat[J]. Ship Engineering, 2020, 42(12): 1-4. |
[4] | HIRST T J, STEELE J E, REMY N D, et al. Performance of mat supported jack-up drilling rigs[C/OL]. (1976-05-02)[2021-11-16]. https://onepetro.org/OTCONF/proceedings-abstract/76OTC/All-76OTC/OTC-2503-MS/46617. |
[5] | COX W R, MCCLURE S C, SORENSEN K H. Settlement of mat-supported mobile units in very soft clays[C/OL]. (1990-05-07)[2021-11-16]. https://onepetro.org/OTCONF/proceedings-abstract/90OTC/All-90OTC/OTC-6468-MS/41216. |
[6] | YOUNG A G, HOUSE H F, TURNER R D, et al. Foundation performance of mat-supported jack-up rigs in soft clays[C/OL]. (1981-05-04)[2021-11-16].https://onepetro.org/OTCONF/proceedings-abstract/81OTC/All-81OTC/OTC-4143-MS/47981. |
[7] | 喻旭明, 王菁, 杜宇, 等. 淤泥质海床中海上风电坐底安装平台地基稳性研究[J]. 中国港湾建设, 2020, 40(8): 47-52. |
[7] | YU Xuming, WANG Jing, DU Yu, et al. Foundation stability of bottom-supported platform of offshore wind power on soft clayey seabed[J]. China Harbour Engineering, 2020, 40(8): 47-52. |
[8] | SKEMPTON A W. The bearing capacity of clays[M]//Selected papers on soil mechanics. London: Thomas Telford Limited, 1951. |
[9] | 中华人民共和国国家发展和改革委员会. 海上固定平台规划、设计和建造的推荐作法工作应力设计法: SY/T 10030—2004[S]. 北京: 石油工业出版社, 2004. |
[9] | National Development and Reform Commission of the People's Republic of China. Recommended practice for planning designing and constructing fixed offshore platforms: Working stress design: SY/T 10030—2004[S]. Beijing: Petroleum Industry Press, 2004. |
[10] | QIU G, HENKE S, GRABE J. Application of a coupled eulerian-lagrangian approach on geomechanical problems involving large deformations[J]. Computers and Geotechnics, 2011, 38(1): 30-39. |
[11] | LI S Z, ZHANG Y H, LI D, et al. Geotechnical analysis of a mat foundation supporting a wellhead platform[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(11): 4021121. |
[12] | 王泽明. 裙式沉垫基础沉放挤泥及抗滑移承载力研究[D]. 大连: 大连理工大学, 2021. |
[12] | WANG Zeming. Study on mud-extrusion and anti-sliding capacity of skirted mat foundation[D]. Dalian: Dalian University of Technology, 2021. |
[13] | 徐蒙. 深海水下生产系统防沉板基础形式改进研究[D]. 天津: 天津大学, 2016. |
[13] | XU Meng. Study of structural improvement of mudmat in deep sea subsea system[D]. Tianjin: Tianjin University, 2016. |
[14] | ULLAH S N, HU Y X, STANIER S, et al. Lateral boundary effects in centrifuge foundation tests[J]. 2017, 17(3): 144-160. |
[15] | STEWART D P, RANDOLPH M F. T-bar penetration testing in soft clay[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2230-2235. |
[16] | HOUSE A R, OLIVEIRA J R M S, RANDOLPH M F. Evaluating the coefficient of consolidation using penetration tests[J]. International Journal of Physical Modelling in Geotechnics, 2001, 1(3): 17-26. |
[17] | FINNIE I, RANDOLPH M. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments[C]//Seventh International Conference on the Behaviour of Offshore Structures. Massachusettes, USA: Pergamon, 1994: 217-230. |
/
〈 |
|
〉 |