交通运输工程

基于周向应变分析的重载轮胎垂向力估计算法

展开
  • 火箭军工程大学 导弹学院,西安 710025
刘钇汛(1997-),硕士生,从事智能轮胎信息感知研究.

收稿日期: 2022-07-01

  修回日期: 2022-09-20

  录用日期: 2022-09-29

  网络出版日期: 2023-03-28

基金资助

国家自然科学基金资助项目(51905541);装发基础研究项目(514010502-302);陕西省自然科学基础研究计划(2020JQ487);陕西省高校科协青年人才托举计划(20190412)

Vertical Force Estimation of Heavy-Loaded Radial Tire Based on Circumferential Strain Analysis

Expand
  • School of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China

Received date: 2022-07-01

  Revised date: 2022-09-20

  Accepted date: 2022-09-29

  Online published: 2023-03-28

摘要

为实现对轮胎垂向力的量化估计,开展了基于周向胎内应变分析的重载轮胎垂向力估计算法研究.建立16.00R20重载轮胎有限元模型,通过轮胎加载实验和模态振动实验对比发现模型垂向刚度误差和振动频率误差分别在7.79%和5.49%以内,验证了模型的有效性;利用有限元方法研究了垂向力对轮胎接地特性和内衬层周向应变的影响规律,根据周向应变曲线特征分析了周向应变与接地角的关系,提出并验证了轮胎接地角表征指标,3个表征指标误差均小于8%;以接地角和接地长度作为辨识特征,结合灰狼优化算法和支持向量回归机建立垂向力估计模型,通过有限元仿真对比验证估计精度.结果表明:结合应变曲线零阶、一阶、二阶导数特征点间距角的表征指标能较准确估算接地角;基于灰狼支持向量回归机的垂向力估计算法估计效果良好,估计值与有限元仿真值误差在1.8%以内,能够准确地估算轮胎垂向力.

本文引用格式

刘钇汛, 刘志浩, 高钦和, 黄通, 马栋 . 基于周向应变分析的重载轮胎垂向力估计算法[J]. 上海交通大学学报, 2023 , 57(10) : 1273 -1281 . DOI: 10.16183/j.cnki.jsjtu.2022.249

Abstract

In order to realize the quantitative estimation of tire vertical force, the algorithm of heavy-loaded tire vertical force estimation based on circumferential strain analysis is studied. A finite element analysis model of 16.00R20 tire is established. A comparison of tire loading test and modal vibration test indicates that the vertical stiffness error and vibration frequency error of the model are less than 7.79% and 5.49% respectively, which verifies the validity of the model. Using the finite element method, the influence of vertical force on tire grounding characteristics and circumferential strain of inner liner is studied. The characterization index of tire contact angle is proposed and verified by circumferential strain analysis, and the errors of the three indexes are all less than 8%. Taking the grounding angle and grounding length as identification features, the vertical force estimation model is established by combining grey wolf optimization (GWO) and the support vector regression (SVR), and the estimation accuracy is verified by finite element simulation. The results indicate that the characterization index in combination with the of characteristic point spacing angle of zero-order, first-order and second-order derivative of strain curve can accurately estimate tire contact angle. The error between the estimated value of the vertical force estimation algorithm based on GWO-SVR and the finite element simulation value is less than 1.8%.

参考文献

[1] 危银涛, 沈筱亮. 轮胎稳态运动学与六分力预报I: 理论与方法[J]. 机械工程学报, 2012, 48(15): 65-74.
[1] WEI Yintao, SHEN Xiaoliang. Theory and method of tire rolling kinematics and prediction of tire forces and moments[J]. Journal of Mechanical Engineering, 2012, 48(15): 65-74.
[2] ALIREZA P, SUBHASH R, CAO D P. Modeling and validation of off-road vehicle ride dynamics[J]. Mechanical Systems and Signal Processing, 2012, 28: 679-695.
[3] LI L, YANG K, JIA G, et al. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations[J]. Mechanical Systems and Signal Processing, 2015, 56: 259-276.
[4] SOLTANI A, GOODARZI A, SHOJAEEFARD M H, et al. Optimizing tire vertical stiffness based on ride, handling, performance, and fuel consumption criteria[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(12): 121004.
[5] LI B, YANG X, YANG J. Tire model application and parameter identification—A literature review[J]. SAE International Journal of Passenger Cars—Mechanical Systems, 2014, 7(1): 231-243.
[6] CARCATERRA A, ROVERI N. Tire grip identification based on strain information: Theory and simulations[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 564-580.
[7] YAMASHITA H, MATSUTANI Y, SUGIYAMA H. Longitudinal tire dynamics model for transient braking analysis: ANCF-LuGre tire model[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(3): 031003.
[8] RILL G. Simulation von Kraftfahrzeugen[M]. Wiesbaden, Germany: Vieweg, 1994: 342-344.
[9] BURCKHARDT M. Fahrwerktechnik, Radschlupf-Regelsysteme[M]. Wrzburg, Germany: Vogel Verlag, 1993: 166-167.
[10] 赵健, 路妍晖, 朱冰, 等. 内嵌加速度计的智能轮胎纵/垂向力估计算法[J]. 汽车工程, 2018, 40(2): 137-142.
[10] ZHAO Jian, LU Yanhui, ZHU Bing, et al. Estimation algorithm for longitudinal and vertical forces ofsmart tire with accelerometer embedded[J]. Automotive Engineering, 2018, 40(2): 137-142.
[11] 王国林, 韩桐, 周海超, 等. 应用模型的智能轮胎垂向力估计算法[J]. 汽车工程, 2021, 43(12): 1865-1870.
[11] WANG Guolin, HAN Tong, ZHOU Haichao, et al. Vertical force estimation algorithm of intelligent tires based on physical model[J]. Automotive Engineering, 2021, 43(12): 1865-1870.
[12] 梁冠群, 危银涛, 赵崇雷, 等. 基于多传感器信息融合的智能轮胎载荷算法[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集. 北京: 中国力学学会, 2017: 1005-1013.
[12] LIANG Guanqun, WEI Yintao, ZHAO Changlei, et al. Intelligent tire load algorithm based on multi-sensor information[C]// Proceedings of the China Mechanics Congress-2017 and the 60th Anniversary of the Founding of the Chinese Society of Mechanics. Beijing, China: Chinese Society of Mechanics, 2017: 1005-1013.
[13] 侯彦果, 李占杰, 龚景海. 平面单元和壳单元在复合有限条法中模拟加劲肋的应用[J]. 上海交通大学学报, 2022, 56(6): 710-721.
[13] HOU Yanguo, LI Zhanjie, GONG Jinghai. Application of plane elements and shell elements in imitating ribs of members in compound strip method[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 710-721.
[14] 王国林, 丁俊杰, 周海超, 等. 智能轮胎力的敏感响应区域及变量[J]. 吉林大学学报(工学版), 2020, 50(6): 1983-1990.
[14] WANG Guolin, DING Junjie, ZHOU Haichao, et al. Force-sensitive response area and variable of intelligent tire[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 1983-1990.
[15] 陶正瑞, 党嘉强, 徐锦泱, 等. 基于支持向量机回归的曲面零件涡流测距标定方法[J]. 上海交通大学学报, 2020, 54(7): 674-681.
[15] TAO Zhengrui, DANG Jiaqiang, XU Jinyang, et al. Eddy current distance measurement calibration method for curved surface parts based on support vector machine regression[J]. Journal of Shanghai Jiao Tong University, 2020, 54(7): 674-681.
[16] 徐宏东, 高海波, 徐晓滨, 等. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421.
[16] XU Hongdong, GAO Haibo, XU Xiaobin, et al. State of health estimation of lithium-ion battery using a CS-SVR model based on evidence reasoning rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421.
[17] MIRJALILI S, MIRJALILI S M, LEWIS A. Greywolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
文章导航

/