新型电力系统与综合能源

适用于中低压MMC的改进NLC调制与电容电压控制策略

展开
  • 1.浙江大学 工程师学院,杭州 310027
    2.内蒙古电力科学研究院,呼和浩特 010020
    3.内蒙古自治区电力系统智能化电网仿真企业重点实验室,呼和浩特 010020
张 伟(1984-),硕士,高级工程师,主要从事智能配电网技术及电力电子化电力系统方面的研究;E-mail:zzww1003@163.com.

收稿日期: 2022-05-20

  修回日期: 2022-10-05

  录用日期: 2023-02-01

  网络出版日期: 2023-03-27

基金资助

内蒙古自治区科技关键技术攻关计划项目(2019GG373)

An Improved NLC and Capacitor Voltage Control Method for Medium-/Low-Voltage MMCs

Expand
  • 1. Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
    2. Inner Mongolia Power Research Institute, Hohhot 010020, China
    3. Inner Mongolia Enterprise Key Laboratory of Smart Grid Simulation of Electrical Power System, Hohhot 010020, China

Received date: 2022-05-20

  Revised date: 2022-10-05

  Accepted date: 2023-02-01

  Online published: 2023-03-27

摘要

模块化多电平换流器(MMC)应用于直流配电网等中低压场景时输出电平数较低、谐波含量高,且电容电压易受直流母线电压波动影响而偏离额定值.针对上述问题,提出一种最近电平逼近调制与电容电压稳定控制相结合的MMC改进控制方法.首先,引入阶梯波修正量以提升MMC交流输出电平数;在此基础上,分析阶梯波修正量对电容电压的影响,提出一种基于电容电压反馈的稳定控制方法,实现子模块电压与外部电气环境的解耦控制,从而限制电容电压波动范围,提高设备安全裕度.最后,在MATLAB/Simulink仿真模型和实时数字仿真系统硬件在环测试中验证方法的正确性和有效性.

本文引用格式

张伟, 韩俊飞, 钟鸣, 王宇强 . 适用于中低压MMC的改进NLC调制与电容电压控制策略[J]. 上海交通大学学报, 2023 , 57(11) : 1465 -1476 . DOI: 10.16183/j.cnki.jsjtu.2022.172

Abstract

The modular multilevel converter (MMC) suffers from low output level and high harmonic distortion in medium-/low-voltage applications such as direct current (DC) distribution networks. In addition, the capacitor voltage of MMC is coupled with DC bus voltage in the traditional modulation method, leading to large fluctuations of capacitor voltages and deviation from the rated value under DC bus voltage margin. In order to solve the problems above, this paper proposes an improved nearest level control method, which can increase the output level of medium-/low-voltage MMCs by introducing a step wave correction. Based on the proposed modulation method, a capacitor voltage feedback control is thus proposed to limit the range of capacitor voltage fluctuations and improve equipment safety. The effectiveness of the proposed method is verified by MATLAB/Simulink simulation and real-time digital simulation system hardware-in-the-loop test.

参考文献

[1] 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报, 2014, 34(29): 5051-5062.
[1] XU Zheng, XUE Yinglin, ZHANG Zheren. VSC-HVDC technology suitable for bulk power overhead line transmission[J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062.
[2] 萧展辉, 蔡微, 黄剑文, 等. MMC型多端柔性直流配电系统协同控制与故障电流抑制策略[J]. 电力系统保护与控制, 2019, 47(11): 103-110.
[2] XIAO Zhanhui, CAI Wei, HUANG Jianwen, et al. Coordinate control scheme for modular multilevel converter based multi-terminal DC distribution power systems and circuit suppression during faults[J]. Power System Protection & Control, 2019, 47(11): 103-110.
[3] EGEA-ALVAREZ A, BIANCHI F, JUNYENT-FERRE A, et al. Voltage control of multiterminal VSC-HVDC transmission systems for offshore wind power plants: design and implementation in a scaled platform[J]. IEEE Transactions on Industrial Electronics, 2013, 60(6): 2381-2391.
[4] DEBNATH S, QIN J C, BAHRANI B, et al. Operation, control, and applications of the modular multilevel converter: A review[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 37-53.
[5] PEREZ M A, BERNET S, RODRIGUEZ J, et al. Circuit topologies, modeling, control schemes, and applications of modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 4-17.
[6] CHEN Y, ZHAO S S, LI Z Y, et al. Modeling and control of the isolated DC-DC modular multilevel converter for electric ship medium voltage direct current power system[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2017, 5(1): 124-139.
[7] HONG L R, XU Q M, HE Z X, et al. Fault-tolerant oriented hierarchical control and configuration of modular multilevel converter for shipboard MVdc system[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4525-4535.
[8] 曹帅, 向往, 林卫星, 等. 含风电的真双极混合型MMC-MTDC系统故障穿越及能量耗散控制[J]. 电力系统保护与控制, 2019, 47(7): 39-48.
[8] CAO Shuai, XIANG Wang, LIN Weixing, et al. Fault ride-through and energy dissipation control of bipolar hybrid MMC-MTDC integrating wind farms[J]. Power System Protection & Control, 2019, 47(7): 39-48.
[9] LIN L, LIN Y Z, HE Z, et al. Improved nearest-level modulation for a modular multilevel converter with a lower submodule number[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5369-5377.
[10] 李国庆, 于泽平, 金国彬, 等. 交流谐波经MMC的传导机理及叠加特性研究[J]. 电力系统保护与控制, 2019, 47(10): 33-41.
[10] LI Guoqing, YU Zeping, JIN Guobin, et al. Study on conduction mechanism and superposition characteristics of AC harmonics via MMC[J]. Power System Protection & Control, 2019, 47(10): 33-41.
[11] LI Y F, WANG Y, LI B Q. Generalized theory of phase-shifted carrier PWM for cascaded H-bridge converters and modular multilevel converters[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(2): 589-605.
[12] MCGRATH B P, ALBERTO TEIXEIRA C, HOLMES D G. Optimized phase disposition (PD) modulation of a modular multilevel converter[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4624-4633.
[13] 郭高朋, 姚良忠, 温家良. 模块化多电平变流器的子模块分组调制及均压控制[J]. 中国电机工程学报, 2016, 36(1): 145-153.
[13] GUO Gaopeng, YAO Liangzhong, WEN Jialiang. The grouping modulation and voltage balance control of the sub-modules in modular multilevel converter[J]. Proceedings of the CSEE, 2016, 36(1): 145-153.
[14] TU Q R, XU Z. Impact of sampling frequency on harmonic distortion for modular multilevel converter[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 298-306.
[15] LI Z X, WANG P, ZHU H B, et al. An improved pulse width modulation method for chopper-cell-based modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3472-3481.
[16] HU P F, JIANG D Z. A level-increased nearest level modulation method for modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 1836-1842.
[17] CHEN X X, LIU J J, SONG S G, et al. Circulating harmonic currents suppression of level-increased NLM based modular multilevel converter with deadbeat control[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 11418-11429.
[18] 冯夏云, 汪飞, 李玉菲, 等. 下垂控制逆变器输出阻抗外特性建模及参数敏感性分析[J]. 中国电机工程学报, 2020, 40(21): 7012-7022.
[18] FENG Xiayun, WANG Fei, LI Yufei, et al. Modelling and sensitivity analysis for the output impedance profile of droop controlled inverter[J]. Proceedings of the CSEE, 2020, 40(21): 7012-7022.
[19] JIN Z M, MENG L X, GUERRERO J M, et al. Hierarchical control design for a shipboard power system with DC distribution and energy storage aboard future more-electric ships[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 703-714.
[20] 高佳宁, 韩蓓, 李国杰, 等. 考虑不确定性的下垂控制微电网可达性分析[J]. 中国电机工程学报, 2019, 39(24): 7179-7188.
[20] GAO Jianing, HAN Bei, LI Guojie, et al. Reachability analysis of droop-controlled microgrids considering uncertainty[J]. Proceedings of the CSEE, 2019, 39(24): 7179-7188.
[21] XIAO Z X, ZHU T L, LI H M, et al. Coordinated control of a hybrid-electric-ferry shipboard microgrid[J]. IEEE Transactions on Transportation Electrification, 2019, 5(3): 828-839.
[22] 赵聪, 李耀华, 李子欣, 等. 混合型模块化多电平变流器电容优化设计[J]. 中国电机工程学报, 2017, 37(19): 5717-5729.
[22] ZHAO Cong, LI Yaohua, LI Zixin, et al. Capacitance optimization design of hybrid modular multilevel converter[J]. Proceedings of the CSEE, 2017, 37(19): 5717-5729.
[23] ZHAO C, LI Y H, LI Z X, et al. Optimized design of full-bridge modular multilevel converter with low energy storage requirements for HVdc transmission system[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 97-109.
[24] 董鹏, 蔡旭, 吕敬. 大幅减小子模块电容容值的MMC优化方法[J]. 中国电机工程学报, 2018, 38(18): 5369-5380.
[24] DONG Peng, CAI Xu, Lü Jing. Optimized method of MMC for greatly reducing the capacitance of the submodules[J]. Proceedings of the CSEE, 2018, 38(18): 5369-5380.
[25] LI B B, XU Z G, SHI S L, et al. Comparative study of the active and passive circulating current suppression methods for modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 1878-1883.
[26] ZENG R, XU L, YAO L Z, et al. Design and operation of a hybrid modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1137-1146.
[27] HAGIWARA M, AKAGI H. Control and experiment of pulsewidth-modulated modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2009, 24(7): 1737-1746.
文章导航

/