新型电力系统与综合能源

基于改进无源性控制的三相LCL并网逆变器输出导纳重塑方法

  • 王晗 ,
  • 张建文 ,
  • 施刚 ,
  • 朱淼 ,
  • 蔡旭
展开
  • 上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
王晗(1982-),博士,助理研究员,从事新能源电力变换控制技术研究.

收稿日期: 2022-04-24

  修回日期: 2022-09-23

  录用日期: 2022-12-13

  网络出版日期: 2023-03-24

基金资助

国家电网有限公司总部科技项目(4000-202055048A-0-0-00)

An Admittance Reshaping Strategy of Three-Phase LCL Grid-Connected Inverter Based on Modified Passive Control

  • Han WANG ,
  • Jianwen ZHANG ,
  • Gang SHI ,
  • Miao ZHU ,
  • Xu CAI
Expand
  • Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-04-24

  Revised date: 2022-09-23

  Accepted date: 2022-12-13

  Online published: 2023-03-24

摘要

基于能量函数的无源性控制(PBC)被广泛研究并用于并网变换器以获得更好的控制性能.然而,传统的PBC方法依赖并网变换器的精确数学模型,且已有研究较少考虑数字控制的延迟效应以及电容性电网或复杂弱电网下电网阻抗的不确定性对系统稳定控制的影响.鉴于此,针对三相LCL并网逆变器提出一种改进PBC方法以实现导纳重塑,通过增加电容电流前馈将系统无源区域扩展到奈奎斯特频率,在电网阻抗宽范围变化下实现LCL谐振频率的有源阻尼控制,并提出改进PBC控制参数设计方法.在3 kW并网逆变器样机平台上开展仿真和实验研究,验证了理论分析的正确性.

本文引用格式

王晗 , 张建文 , 施刚 , 朱淼 , 蔡旭 . 基于改进无源性控制的三相LCL并网逆变器输出导纳重塑方法[J]. 上海交通大学学报, 2023 , 57(9) : 1105 -1113 . DOI: 10.16183/j.cnki.jsjtu.2022.120

Abstract

The passivity-based control (PBC) based on energy function has been studied for grid-connected converters to achieve a better performance. However, traditional PBC method relies on the accurate mathematical model of grid-connected inverter. In previous studies on PBC, the effect of digital control delay is rarely considered and the stability under grid impedance uncertainties is not discussed, especially in the capacitive grid or complex weak grid. To address these issues, this paper proposes an improved PBC method to reshape the output admittance for LCL-filtered grid-connected inverters. The system passive region is expanded up to the Nyquist frequency by adding a capacitor current feedback loop which can achieve active damping control of LCL resonant frequency under the wide range of grid impedance changes. The parameter design method is also presented for the proposed PBC control. To verify the correctness of the theoretical analysis, both simulation and experiments are conducted on a 3 kW grid-connected inverter prototype.

参考文献

[1] BLAABJERG F, CHEN Z, KJAER S B. Power electronics as efficient interface in dispersed power generation systems[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1184-1194.
[2] PAN D H, RUAN X B, BAO C L, et al. Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter[J]. IEEE Transactions on Power Electronics, 2013, 29(7): 3414-3427.
[3] PE?A-ALZOLA R, LISERRE M, BLAABJERG F, et al. Analysis of the passive damping losses in LCL-filter-based grid converters[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2642-2646.
[4] 张计科, 王美臣. LCL型光伏并网逆变器无源阻尼控制策略[J]. 电源技术, 2020, 44(9): 1334-1337.
[4] ZHANG Jike, WANG Meichen. Passive damping control strategy of LCL-type PV grid-connected inverter[J]. Chinese Journal of Power Sources, 2020, 44(9): 1334-1337.
[5] KOUCHAKI A, NYMAND M. Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3012-3022.
[6] 刘鸿鹏, 边新新, 张伟, 等. 扩大有效阻尼区的改进型电容电流反馈有源阻尼策略[J]. 高电压技术, 2022, 48(1): 114-124.
[6] LIU Hongpeng, BIAN Xinxin, ZHANG Wei, et al. Novel capacitor current feedback active damping strategy for extending the range of equivalent virtual damping[J]. High Voltage Engineering, 2022, 48(1): 114-124.
[7] 曹子恒, 肖先勇, 马俊鹏, 等. 提高LCL型并网逆变器鲁棒性的改进型电容电流反馈有源阻尼策略[J]. 高电压技术, 2020, 46(11): 3781-3790.
[7] CAO Ziheng, XIAO Xianyong, MA Junpeng, et al. Novel capacitor current feedback active damping strategy for enhancing robustness of LCL-type grid-connected inverters[J]. High Voltage Engineering, 2020, 46(11): 3781-3790.
[8] HE Y Y, WANG X H, RUAN X B, et al. Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12423-12436.
[9] HUANG M, WANG X F, LOH P C, et al. Active damping of LLCL-filter resonance based on LC-trap voltage or current feedback[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2337-2346.
[10] HE Y Y, WANG X H, RUAN X B, et al. Hybrid active damping combining capacitor current feedback and point of common coupling voltage feedforward for LCL-type grid-connected inverter[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2373-2383.
[11] ZOU C Y, LIU B Y, DUAN S X, et al. Influence of delay on system stability and delay optimization of grid-connected inverters with LCL filter[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1775-1784.
[12] PARKER S G, MCGRATH B P, HOLMES D G. Regions of active damping control for LCL filters[J]. IEEE Transactions on Industry Applications, 2014, 50(1): 424-432.
[13] WANG J G, YAN J D, JIANG L, et al. Delay-dependent stability of single-loop controlled grid-connected inverters with LCL filters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 743-757.
[14] KOMURCUGIL H, ALTIN N, OZDEMIR S, et al. Lyapunov-function and proportional-resonant-based control strategy for single-phase grid-connected VSI with LCL filter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2838-2849.
[15] WANG J H, MU X B, LI Q K. Study of passivity-based decoupling control of T-NPC PV grid-connected inverter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7542-7551.
[16] ZHAO J P, WU W M, SHUAI Z K, et al. Robust control parameters design of PBC controller for LCL-filtered grid-tied inverter[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8102-8115.
[17] AWAL M A, YU W S, HUSAIN I. Passivity-based predictive-resonant current control for resonance damping in LCL-equipped VSCs[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1702-1713.
[18] JUDEWICZ M G, GONZáLEZ S A, FISCHER J R, et al. Inverter-side current control of grid-connected voltage source inverters with LCL filter based on generalized predictive control[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2018, 6(4): 1732-1743.
[19] HAO X, YANG X, LIU T, et al. A sliding-mode controller with multiresonant sliding surface for single-phase grid-connected VSI with an LCL filter[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2259-2268.
[20] 柯顺超, 朱淼, 陈阳, 等. 基于MMC-UPFC无源性滑模变结构控制的电网不平衡治理策略[J]. 高电压技术, 2020, 46(3): 1078-1086.
[20] KE Shunchao, ZHU Miao, CHEN Yang, et al. Treatment strategy of unbalanced grid voltage conditions based on MMC-UPFC passive sliding-mode variable structure control[J]. High Voltage Engineering, 2020, 46(3): 1078-1086.
[21] ORTEGA R, LORíA A, NICKLASSON P J, et al. Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[M]. London: Springer-Verlag, 1998.
[22] LIU Z G, GENG Z Z, HU X X. An approach to suppress low frequency oscillation in the traction network of high-speed railway using passivity-based control[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3909-3918.
[23] WANG X F, BLAABJERG F, LOH P C. Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filters[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8922-8935.
[24] LIU Y X, XU J Z, SHUAI Z K, et al. Passivity-based decoupling control strategy of single-phase LCL-type VSRs for harmonics suppression in railway power systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105698.
[25] LAI J M, YIN X G, ZHANG Z, et al. System modeling and cascaded passivity based control for distribution transformer integrated with static synchronous compensator[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 1035-1046.
[26] XIE C, LI K, ZOU J X, et al. Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6636-6648.
[27] 张庆海, 罗安, 陈燕东, 等. 并联逆变器输出阻抗分析及电压控制策略[J]. 电工技术学报, 2014, 29(6): 98-105.
[27] ZHANG Qinghai, LUO An, CHEN Yandong, et al. Analysis of output impedance for parallel inverters and voltage control strategy[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 98-105.
[28] HARNEFORS L, ZHANG L, BONGIOMO M. Frequency-domain passivity-based current controller design[J]. IET Power Electronics, 2008, 1(4): 455-465.
文章导航

/