化学化工

镍催化下乙腈为氰源的芳基三氟甲磺酸酯氰化反应

  • 周堃 ,
  • 沈增明
展开
  • 上海交通大学 化学化工学院,上海 200240
周堃(1997-),硕士生,从事金属有机化学研究.

收稿日期: 2022-04-11

  修回日期: 2022-12-19

  录用日期: 2022-12-30

  网络出版日期: 2023-03-18

基金资助

国家自然科学基金(21272001);国家自然科学基金(21672144);青海省科技部门(2020-ZJ-702);上海交通大学(YG2019QNB37)

Nickel-Catalyzed Cyanation of Aryl Triflates Using Acetonitrile as a Cyano Source

  • Kun ZHOU ,
  • Zengming SHEN
Expand
  • School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-04-11

  Revised date: 2022-12-19

  Accepted date: 2022-12-30

  Online published: 2023-03-18

摘要

经典的氰化反应中多使用剧毒的金属氰源或合成复杂的有机氰源,这些氰源由于各自存在缺陷,都有一定局限性.将镍催化下低毒、廉价的乙腈作为氰源,以芳基三氟甲磺酸酯作为底物,对催化剂、配体、添加剂、温度等条件进行筛选,以物质的量分数为0.1的 Ni(OTf)2作为催化剂,物质的量分数为0.1的1, 3-双(二苯基膦)丙烷作为配体,物质的量分数为2的 Zn作为还原剂,物质的量分数为0.2的Zn(OTf)2作为添加剂,0.7 mL乙腈作为溶剂,氮气保护下,100 ℃反应60 h,成功实现芳基腈的高效合成.在该反应条件下,给电子取代基的底物展现出高效的反应性.该方法第一次实现镍催化下芳基三氟甲磺酸酯的氰化反应,成功使用绿色、经济的乙腈溶剂作为该反应的氰源.

本文引用格式

周堃 , 沈增明 . 镍催化下乙腈为氰源的芳基三氟甲磺酸酯氰化反应[J]. 上海交通大学学报, 2023 , 57(10) : 1245 -1249 . DOI: 10.16183/j.cnki.jsjtu.2022.108

Abstract

In classic cyanation reactions, toxic metal cyanide sources or complex organic cyanide sources are often used. Therefore, it is particularly important to develop a green and economical cyano source. Initially, 4-biphenylyl trifluoromethanesulfonate is chosen as the model substrate. Through extensive screening of catalysts, ligands, additives, reductant, temperature and other conditions, the optimal conditions are obtained (Ni(OTf)2, 1, 3-bis (diphenyphosphino)propane, Zn(OTf)2, Zn with a mole fraction of 0.1, 0.1, 0.2, 2, respectively, 0.7 mL CH3CN, N2, 60 h, 100 ℃). Subsequently, the generation and limitations of the substrates are studied under optimal conditions. It is found that substrates bearing electron-donating substituents exhibit an excellent efficiency for the cyanation of aryl trifluoromethanesulfonates. The cyanation of aryl trifluoromethanesulfonates is first realized under the catalysis of nickel with acetonitrile as a green and economical cyano source.

参考文献

[1] KLEEMANN A, ENGEL J, KUTSCHER B, et al. Pharmaceutical substances: Syntheses, patents, applications[J]. Synthesis, 2002, 3: 439-440.
[2] RAPPOPORT Z. The chemistry of the cyano group[M]. London: John Wiley & Sons, 1970.
[3] TAKAGI K, OKAMOTO T, SAKAKIBARA Y, et al. Palladium(II) catalyzed synthesis of aryl cyanides from aryl halides[J]. Chemistry Letters, 1973, 2(5): 471-474.
[4] SUNDERMEIER M, ZAPF A, BELLER M, et al. A new palladium catalyst system for the cyanation of aryl chlorides[J]. Tetrahedron Letters, 2001, 42(38): 6707-6710.
[5] CRISTAU H J, OUALI A, SPINDLER J F, et al. Mild and efficient copper-catalyzed cyanation of aryl iodides and bromides[J]. Chemistry-A European Journal, 2005, 11(8): 2483-2492.
[6] SCHAREINA T, ZAPF A, BELLER M. Potassium hexacyanoferrate(II)—A new cyanating agent for the palladium-catalyzed cyanation of aryl halides[J]. Chemical Communications, 2004(12): 1388-1389.
[7] SCHAREINA T, ZAPF A, BELLER M. An environmentally benign procedure for the Cu-catalyzed cyanation of aryl bromides[J]. Tetrahedron Letters, 2005, 46(15): 2585-2588.
[8] YEUNG P Y, SO C M, LAU C P, et al. A mild and efficient palladium-catalyzed cyanation of aryl chlorides with K4[Fe(CN)6][J]. Organic Letters, 2011, 13(4): 648-651.
[9] CHATANI N, HANAFUSA T. Palladium-catalyzed cyanation of aryl halides by trimethylsilyl cyanide[J]. Journal of Organic Chemistry, 1986, 51: 4714-4716.
[10] SUNDERMEIER M, MUTYALA S, ZAPF A, et al. A convenient and efficient procedure for the palladium-catalyzed cyanation of aryl halides using trimethylsilylcyanide[J]. Journal of Organometallic Chemistry, 2003, 684(1/2): 50-55.
[11] SUNDERMEIER M, ZAPF A, BELLER M. A convenient procedure for the palladium-catalyzed cyanation of aryl halides[J]. Angewandte Chemie, International Edition, 2003, 42(14): 1661-1664.
[12] SCHAREINA T, ZAPF A, COTTÉ A, et al. A versatile protocol for copper-catalyzed cyanation of aryl and heteroaryl bromides with acetone cyanohydrin[J]. Advanced Synthesis & Catalysis, 2011, 353(5): 777-780.
[13] BURG F, EGGER J, DEUTSCH J, et al. A homogeneous method for the conveniently scalable palladium-and nickel-catalyzed cyanation of aryl halides[J]. Organic Process Research & Development, 2016, 20(8): 1540-1545.
[14] ANBARASAN P, SCHAREINA T, BELLER M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: Synthesis of benzonitriles[J]. Chemical Society Reviews, 2011, 40(10): 5049-5067.
[15] NEETHA M, AFSINA C M A, ANEEJA T, et al. Recent advances and prospects in the palladium-catalyzed cyanation of aryl halides[J]. RSC Advances, 2020, 10(56): 33683-33699.
[16] CASSAR L. A new nickel-catalyzed synthesis of aromatic nitriles[J]. Journal of Organometallic Chemistry, 1973, 54: C57-C58.
[17] ARVELA R K, LEADBEATER N E. Rapid, easy cyanation of aryl bromides and chlorides using nickel salts in conjunction with microwave promotion[J]. The Journal of Organic Chemistry, 2003, 68(23): 9122-9125.
[18] MATLOUBI MOGHADDAM F, TAVAKOLI G, REZVANI H R. Highly active recyclable heterogeneous nanonickel ferrite catalyst for cyanation of aryl and heteroaryl halides[J]. Applied Organometallic Chemistry, 2014, 28(10): 750-755.
[19] ZHANG X J, XIA A Y, CHEN H Y, et al. General and mild nickel-catalyzed cyanation of aryl/heteroaryl chlorides with Zn(CN)2: Key roles of DMAP[J]. Organic Letters, 2017, 19(8): 2118-2121.
[20] CHEN H, SUN S H, LIU Y A, et al. Nickel-catalyzed cyanation of aryl halides and hydrocyanation of alkynes via C-CN bond cleavage and cyano transfer[J]. ACS Catalysis, 2020, 10: 1397-1405.
[21] TAKISE R, ITAMI K, YAMAGUCHI J. Cyanation of phenol derivatives with aminoacetonitriles by nickel catalysis[J]. Organic Letters, 2016, 18(17): 4428-4431.
[22] YU P, MORANDI B. Nickel-catalyzed cyanation of aryl chlorides and triflates using butyronitrile: Merging retro-hydrocyanation with cross-coupling[J]. Angewandte Chemie, International Edition, 2017, 56(49): 15693-15697.
[23] GAN Y, WANG G N, XIE X, et al. Nickel-catalyzed cyanation of phenol derivatives with Zn(CN)2 involving C—O bond cleavage[J]. The Journal of Organic Chemistry, 2018, 83(22): 14036-14048.
[24] MILLS L R, GRAHAM J M, PATEL P, et al. Ni-catalyzed reductive cyanation of aryl halides and phenol derivatives via transnitrilation[J]. Journal of the American Chemical Society, 2019, 141(49): 19257-19262.
[25] KOU X Z, ZHAO M D, QIAO X X, et al. Copper-catalyzed aromatic C—H bond cyanation by C—CN bond cleavage of inert acetonitrile[J]. Chemistry-A European Journal, 2013, 19(50): 16880-16886.
[26] ZHU Y M, ZHAO M D, LU W K, et al. Acetonitrile as a cyanating reagent: Cu-catalyzed cyanation of arenes[J]. Organic Letters, 2015, 17(11): 2602-2605.
[27] YU Z W, LI L Y, SHEN Z M. Cu-catalyzed cyanation of aryl iodides with acetonitrile as cyano source[J]. Chinese Journal of Organic Chemistry, 2017, 37(5): 1273-1277.
[28] LUO F H, CHU C I, CHENG C H. Nitrile-group transfer from solvents to aryl halides. novel carbon-carbon bond formation and cleavage mediated by palladium and zinc species[J]. Organometallics, 1998, 17(6): 1025-1030.
文章导航

/