新型电力系统与综合能源

基于预期动态方程的含高比例可再生能源孤岛运行微电网负荷频率控制

  • 吴振龙 ,
  • 刘艳红 ,
  • 薛亚丽 ,
  • 李东海 ,
  • CHEN Yangquan
展开
  • 1.郑州大学 电气与信息工程学院,郑州 450001
    2.清华大学 能源与动力工程系,北京 100084
    3.加州大学默塞德分校 工程学院, 美国 默塞德 CA 95343
吴振龙(1992-),副教授,从事PID控制、自抗扰控制及其在热力系统和电力系统中的应用研究.
刘艳红,教授,博士生导师,电话(Tel.):0371-67783113;E-mail: liuyh@zzu.edu.cn.

收稿日期: 2022-11-15

  修回日期: 2023-03-08

  录用日期: 2023-03-10

  网络出版日期: 2023-03-20

基金资助

国家自然科学基金项目(52106030);河南省科技攻关项目(212102311052);电力系统国家重点实验室开放课题(SKLD21KM14);郑州大学教授团队助力企业创新驱动发展专项资助项目(JSZLQY2022016)

Load Frequency Control of Islanding Micro-Grid with High-Proportional Renewable Energy Based on Desired Dynamics Equation

  • WU Zhenlong ,
  • LIU Yanhong ,
  • XUE Yali ,
  • LI Donghai ,
  • CHEN Yangquan
Expand
  • 1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
    2. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    3. School of Engineering, University of California, Merced CA 95343, USA

Received date: 2022-11-15

  Revised date: 2023-03-08

  Accepted date: 2023-03-10

  Online published: 2023-03-20

摘要

针对高比例可再生能源并入微电网带来的负荷频率控制问题,提出基于预期动态方程的比例-积分-微分(PID)控制策略.在分析微电网负荷频率控制模型和控制难点的基础上,设计基于预期动态方程的PID控制策略,采用单一变量法分析控制器参数对控制效果的影响,总结了简单、实用的参数整定流程,并在微电网负荷频率控制系统中应用.在不同工况下与多种控制器进行仿真对比,结果表明:所提控制策略能够在保证鲁棒性的前提下取得最佳控制效果,展现出很高的工程应用价值.

本文引用格式

吴振龙 , 刘艳红 , 薛亚丽 , 李东海 , CHEN Yangquan . 基于预期动态方程的含高比例可再生能源孤岛运行微电网负荷频率控制[J]. 上海交通大学学报, 2024 , 58(6) : 954 -964 . DOI: 10.16183/j.cnki.jsjtu.2022.459

Abstract

A proportional-integral-derivative (PID) control strategy based on desired dynamics equation is proposed to solve the problem of load frequency control in micro-grid integrated with a large proportion of renewable energy. Based on the analysis of the load frequency control model and control difficulties of the micro-grid, a PID control strategy based on desired dynamics equation is designed. By analyzing the influence of controller parameters on the control performance using the single variable method, a simple and practical parameter procedure is summarized and the proposed controller strategy is applied to the load frequency control of the micro-grid. The simulation comparison with various controllers under different conditions show that the proposed control strategy can obtain the best control performance with good robustness and have a significant value for engineering application.

参考文献

[1] 刘吉臻, 王玮, 胡阳, 等. 新能源电力系统控制与优化[J]. 控制理论与应用, 2016: 33(12): 1555-1561.
  LIU Jizhen, WANG Wei, HU Yang, et al. Control and optimization of alternate electrical power system with renewable energy sources[J]. Control Theory & Applications, 2016, 33(12): 1555-1561.
[2] 陈春, 高靖, 曹一家, 等. 多源配网主动孤岛恢复过程电压频率波动的平抑方法[J]. 上海交通大学学报, 2022, 56(5): 543-553.
  CHEN Chun, GAO Jing, CAO Yijia, et al. Voltage and frequency suppression of intentional islanding restoration process for distribution system with multi-generations[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 543-553.
[3] JIANG T Y, JU P, WANG C, et al. Coordinated control of air-conditioning loads for system frequency regulation[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 548-560.
[4] ALHELOU H, HAMEDANI-GOLSHAN M E, ZAMANI R, et al. Challenges and opportunities of load frequency control in conventional, modern and future smart power systems: A comprehensive review[J]. Energies, 2018, 11(10): 2497.
[5] ABOU EL-ELA A A, EL-SEHIEMY R A, SHAHEEN A M, et al. Design of cascaded controller based on coyote optimizer for load frequency control in multi-area power systems with renewable sources[J]. Control Engineering Practice, 2022, 121: 105058.
[6] SINGH K. Load frequency regulation by de-loaded tidal turbine power plant units using fractional fuzzy based PID droop controller[J]. Applied Soft Computing, 2020, 92: 106338.
[7] WU Z L, LIU Y H, CHEN Y Q, et al. Load frequency regulation for multi-area power systems with renewable sources via active disturbance rejection control[J]. Energy Reports, 2022, 8: 401-409.
[8] MI Y, XU Y W, SHI S, et al. Sliding mode load frequency control design for the novel integrated model of time-delay renewable power system[J]. Proceedings of the CSEE, 2022, 42(11): 3953-3963.
[9] MU C X, TANG Y F, HE H B. Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6742-6751.
[10] 杨德友, 蔡国伟. 含规模化风电场/群的互联电网负荷频率广域分散预测控制[J]. 中国电机工程学报, 2015, 35(3): 583-591.
  YANG Deyou, CAI Guowei. Decentralized model predictive control based load frequency control for high wind power penetrated power systems[J]. Proceedings of the CSEE, 2015, 35(3): 583-591.
[11] KAMAL F, CHOWDHURY B. Model predictive control and optimization of networked microgrids[J]. International Journal of Electrical Power & Energy Systems, 2022, 138: 107804.
[12] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
[13] YAN Z M, XU Y. Data-driven load frequency control for stochastic power systems:A deep reinforcement learning method with continuous action search[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1653-1656.
[14] 范培潇, 柯松, 杨军, 等. 基于改进多智能体深度确定性策略梯度的多微网负荷频率协同控制策略[J]. 电网技术, 2022, 46(9): 3504-3515.
  FAN Peixiao, KE Song, YANG Jun, et al. Load frequency coordinated control strategy of multi-microgrid based on improved MA-DDPG[J]. Power System Technology, 2022, 46(9): 3504-3515.
[15] SOMEFUN O A, AKINGBADE K, DAHUNSI F. The dilemma of PID tuning[J]. Annual Reviews in Control, 2021, 52: 65-74.
[16] SHI G J, LI D H, DING Y J, et al. Desired dynamic equational proportional-integral-derivative controller design based on probabilistic robustness[J]. International Journal of Robust & Nonlinear Control, 2022, 32(18): 9556-9592.
[17] BALAJI K. Load frequency control in stochastic macro grid[EB/OL]. (2020-12-05)[2022-05-29]. https://www.mathworks.com/matlabcentral/fileexchange/83908-load-frequency-control-in-stochastic-dynamic-micro-grid.
[18] ?STR?M K J, PANAGOPOULOS H, H?GGLUND T. Design of PI controllers based on non-convex optimization[J]. Automatica, 1998, 34(5): 585-601.
文章导航

/