机械与动力工程

锪窝圆角半径对CFRP/Al机械连接结构力学性能影响

展开
  • 1.上海飞机制造有限公司, 上海 201324
    2.上海交通大学 机械与动力工程学院,上海 200240
王贤锋(1989-),高级工程师,从事航空复合材料装配和制孔技术研究.
安庆龙,教授,博士生导师,电话(Tel.):021-34206556;E-mail:qlan@sjtu.edu.cn.

收稿日期: 2022-07-21

  修回日期: 2022-09-12

  录用日期: 2022-09-16

  网络出版日期: 2023-03-16

基金资助

上海市工业强基项目(GYQJ-2019-1-31)

Influence of Countersink Fillet Radius on Mechanical Performance of CFRP/Al Bolted Joints

Expand
  • 1. Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-07-21

  Revised date: 2022-09-12

  Accepted date: 2022-09-16

  Online published: 2023-03-16

摘要

碳纤维增强复合材料(CFRP)和铝合金(Al)因其优异的机械/物理性能,广泛应用于新一代商用飞机.CFRP/Al沉头螺栓连接结构是重要的连接形式,其中锪窝圆角半径影响了机械连接性能.研究中设计制造不同锪窝圆角的钻锪一体刀具对锪窝圆角尺寸进行控制,并采用基于复合材料渐进损伤模型的有限元仿真方法对不同锪窝圆角半径连接结构力学性能进行仿真和试验研究,分析了CFRP/Al叠层机械连接失效机理.结果表明,利用钻锪一体锪窝钻头可以有效控制锪窝圆角;锪窝位于CFRP层相比于位于铝合金层有着更大的极限强度;CFRP和铝合金材料均在锪窝圆角半径为1.0 mm 时具有最大的极限载荷,即锪窝圆角略大于螺栓圆角有利于获得更好的机械连接性能.

本文引用格式

王贤锋, 邹凡, 刘畅, 安庆龙, 陈明 . 锪窝圆角半径对CFRP/Al机械连接结构力学性能影响[J]. 上海交通大学学报, 2024 , 58(3) : 342 -351 . DOI: 10.16183/j.cnki.jsjtu.2022.288

Abstract

Carbon fiber reinforced polymer (CFRP) and aluminum alloys (Al) are widely used in the new generation of commercial aircraft due to their excellent mechanical/physical properties. CFRP/Al countersink bolted structures are important connection forms, where the radius of the countersink fillet affects the mechanical connection performance. The countersink fillet radius is an important factor affecting the mechanical performance of bolted joints. In this paper, the countersink fillet radius is controlled by specially-designed drill-countersink tools with different countersink fillet radii. Meanwhile, the finite element model based on the progressive damage method of composite material is established and utilized to simulate the mechanical performance of different composite/metal bolted joints. The failure mechanism of CFRP/Al bolted joints is analyzed. The results show that the countersink fillet radius can be effectively controlled by specially-designed drill-counterbore tools. The ultimate strength of bolted joints with dimple in the CFRP layer is higher than that in the aluminum alloy layer. In terms of the countersink fillet radius, both CFRP and aluminum alloy materials have the maximum strength when the countersink fillet radius is 1.0 mm. That is, the countersink fillet radius should be slightly larger than the bolt fillet radius, which is conducive to a better mechanical performance.

参考文献

[1] BELLINI C, COCCO V D, IACOVIELLO F, et al. Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics[J]. Composite Structures, 2019, 225: 111117.
[2] 管清宇, 夏品奇, 郑晓玲, 等. 复合材料层压板冲击后压缩强度拟合模型[J]. 上海交通大学学报, 2021, 55(11): 1459-1466.
  GUAN Qingyu, XIA Pinqi, ZHENG Xiaoling, et al. Fitting model to compressive strength of composite laminate after impact[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1459-1466.
[3] CHEN Y, LI M, YANG X, et al. Durability and mechanical behavior of CFRP/Al structural joints in accelerated cyclic corrosion environments[J]. International Journal of Adhesion and Adhesives, 2020, 102: 102695.
[4] SUO H, WEI Z, ZHANG K, et al. Interfacial wear damage of CFRP/Ti-alloy single-lap bolted joint after long-term seawater aging[J]. Engineering Failure Analysis, 2022, 139: 106464.
[5] 刘风雷, 刘丹, 刘健光. 复合材料结构用紧固件及机械连接技术[J]. 航空制造技术, 2012 (Z1): 102-104.
  LIU Fenglei, LIU Dan, LIU Jianguang. Fastener and mechanical joining technology for composite structure[J]. Aeronautical Manufacturing Technology, 2012 (Z1): 102-104.
[6] ABSI C, ALSINANI N, LEBEL L L. Carbon fiber reinforced poly (ether ether ketone) rivets for fastening composite structures[J]. Composite Structures, 2022, 280: 114877.
[7] QIN X, CAO X, LI H, et al. Effects of countersunk hole geometry errors on the fatigue performance of CFRP bolted joints[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(4): 337-347.
[8] 谢鸣九. 复合材料连接技术[M]. 上海: 上海交通大学出版社, 2016: 121-160.
  XIE Mingjiu. Joint for composites materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 121-160.
[9] MERAM A, CAN A. Experimental investigation of screwed joints capabilities for the CFRP composite laminates[J]. Composites Part B: Engineering, 2019, 176: 107142.
[10] HU J, ZHANG K, CHENG H, et al. An experimental investigation on interfacial behavior and preload response of composite bolted interference-fit joints under assembly and thermal conditions[J]. Aerospace Science and Technology, 2020, 103: 105917.
[11] WANG H, ZHOU M, LIU B. Tolerance allocation with simulation-based digital twin for CFRP-metal countersunk bolt joint[C]// ASME International Mechanical Engineering Congress and Exposition. Pennsylvania, USA: American Society of Mechanical Engineers, 2018, 52019: V002T02A108.
[12] 宋广舒. 复合材料沉头螺栓连接强度分析与渐进损伤研究[D]. 郑州: 郑州大学, 2017.
  SONG Guangshu. The strength analysis and progressive damage research for countersunk composite bolted joints[D]. Zhengzhou: Zhengzhou University, 2017.
[13] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47 (2): 329-334.
[14] DAVILA C G. Failure criteria for FRP laminates[J]. Journal of Composite Materials, 2003, 39 (4): 404-408.
[15] PUCK A, SCHüRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology, 1998, 62 (12/13): 1633-1662.
[16] HOU J P, PETRINIC N, RUIZ C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science & Technology, 2001, 61 (14): 2069-2074.
[17] LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures, 2016, 149: 408-422.
[18] TAN W, FALZON B G, CHIU L, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212-226.
[19] CAMANHO P P, MATTHEWS F L. Stress analysis and strength prediction of mechanically fastened joints in FRP: A review[J]. Composites Part A: Applied Science & Manufacturing, 1997, 28 (6): 529-547.
[20] LEMAITRE J, DESMORAT R. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures[M]. Berlin-Heidelberg, Germany: Springer, 2005.
[21] ASTM Committee D-30 on Composite Materials. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039M-08[S]. West Conshohocken, USA: ASTM international, 2008.
[22] SHAN M J, ZHAO L B, LIU F R, et al. Revealing the competitive fatigue failure behavior of CFRP-aluminum two-bolt, double-lap joints[J]. Composite Structures, 2020, 244: 112166.
[23] LI X, GAO W, LIU W. Post-buckling progressive damage of CFRP laminates with a large-sized elliptical cutout subjected to shear loading[J]. Composite Structures, 2015, 128: 313-321.
[24] 张娇蕊, 山美娟, 黄伟, 等. 湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响[J]. 复合材料学报, 2021, 38(7): 2224-2233.
  ZHANG Jiaorui, SHAN Meijuan, HUANG Wei, et al. Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2224-2233.
[25] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015: 72-83.
  ZHAO Libin, XU Jifeng. Methods for analysis of advanced composite joining structures[M]. Beijing: Beihang University Press, 2015: 72-83.
文章导航

/