改进型自激谐振无线电能传输系统
收稿日期: 2022-10-28
修回日期: 2022-12-15
录用日期: 2023-01-19
网络出版日期: 2023-03-13
基金资助
国家自然科学基金(51877113)
Improved Self-Excited Resonant Wireless Power Transmission System
Received date: 2022-10-28
Revised date: 2022-12-15
Accepted date: 2023-01-19
Online published: 2023-03-13
针对一种自激式谐振无线电能传输(WPT)系统的主功率管驱动能力弱、软开关性能差、开关损耗大等问题,通过分析谐振主电路工作原理,发现问题的根源是两个不可控二极管限制了主功率管驱动电阻值.采用全控型小功率开关管代替二极管提出一种改进型自激谐振电路,通过对电路4种工作模态的理论分析,证实改进型电路主功率管具有较强的驱动能力.为了进一步得到改进型系统的最优参数,综合考虑各参数容限值建立系统非线性规划模型,设计一种混合优化算法,得到系统全局最优解.利用系统仿真及实验样机进行对比验证,结果表明:改进型WPT系统软开关性能优良,开关管温度降低约7 ℃,效率提升约4%.
赵志斌, 骆彬, 唐婷, 王春芳, 孙中华 . 改进型自激谐振无线电能传输系统[J]. 上海交通大学学报, 2023 , 57(7) : 859 -867 . DOI: 10.16183/j.cnki.jsjtu.2022.427
Aimed at the main power tube with problems of weak driving ability, poor soft switching performance, and large switching loss in a self-excited resonant wireless power transmission (WPT) system, an analysis of the working principle of resonant main circuit is conducted, which indicates that the root cause of the problem is that two uncontrollable diodes limit the driving resistance of main power tube. Thereofre, an improved self-excited resonant circuit is proposed by using a fully controlled low power switch instead of the diode. The circuit theoretical analysis of four working modes suggests that the main power tube of the improved circuit has a stronger driving ability. To further obtain the optimal parameters of the improved system, a nonlinear programming model of the system is established by considering the tolerance limit of each parameter, and a hybrid optimization algorithm is designed to obtain the system global optimal solution. A comparison of the results of system simulation and experimental prototype shows that the improved WPT system has an excellent soft switching performance. The temperature of the switch tube is reduced by about 7 ℃, and the efficiency is increased by about 4%.
[1] | 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. |
[1] | XUE Ming, YANG Qingxin, ZHANG Pengcheng, et al. Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. |
[2] | KURS A, KARALIS A, MOFFATT R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. |
[3] | ZHANG Z, PANG H L, GEORGIADIS A, et al. Wireless power transfer-An overview[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1044-1058. |
[4] | 高晋阳, 颜国正, 石云波, 等. 肠道微型仿尺蠖式机器人机载供能线圈优化[J]. 上海交通大学学报, 2020, 54(2): 152-159. |
[4] | GAO Jinyang, YAN Guozheng, SHI Yunbo, et al. Optimization of a powering coil onboard a dime-size inchworm-like robot for exploring the intestine[J]. Journal of Shanghai Jiao Tong University, 2020, 54(2): 152-159. |
[5] | ZHANG Q L, WANG C F, YUAN H, et al. Research on input-parallel single-switch wireless power transfer system with constant-current and constant-voltage output[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 4817-4830. |
[6] | 李应智, 魏业文, 王琦婷, 等. 应用于磁耦合谐振式无线电能传输系统的高效率E类逆变电源设计方法[J]. 电工技术学报, 2019, 34(2): 219-225. |
[6] | LI Yingzhi, WEI Yewen, WANG Qiting, et al. Design method of high efficiency class-E inverter applied to magnetic coupled resonant wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 219-225. |
[7] | 徐惠三. 自激推挽ICPT系统效率分析与优化设计[D]. 西安: 西安科技大学, 2017. |
[7] | XU Huisan. Efficiency analysis and optimization design of self-oscillatory push-pull ICPT[D]. Xi’an: Xi’an University of Science and Technology, 2017. |
[8] | 王尧, 刘卫国, 皇甫宜耿, 等. 基于自激逆变器的无线电能传输系统[J]. 电工技术学报, 2019, 34(22): 4751-4760. |
[8] | WANG Yao, LIU Weiguo, HUANGFU Yigeng, et al. Wireless power transfer system based on the self-excited inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4751-4760. |
[9] | 张献, 苑朝阳, 杨庆新, 等. 自激推挽式磁耦合无线电能传输系统磁屏蔽特性分析[J]. 中国电机工程学报, 2018, 38(2): 555-561. |
[9] | ZHANG Xian, YUAN Zhaoyang, YANG Qingxin, et al. Analysis of the magnetic shielding characteristics of magnetic coupling resonant wireless power transmission system based on self-excited push-pull converter[J]. Proceedings of the CSEE, 2018, 38(2): 555-561. |
[10] | 杨晶菁, 陈为, 谢文燕. 自激推挽式无线电能传输系统研究[J]. 电源学报, 2021, 19(2): 142-152. |
[10] | YANG Jingjing, CHEN Wei, XIE Wenyan. Research on wireless power transmission system based on self-excited push-pull oscillator[J]. Journal of Power Supply, 2021, 19(2): 142-152. |
[11] | LI H C, WANG K P, FANG J Y, et al. Pulse density modulated ZVS full-bridge converters for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 369-377. |
[12] | 高键鑫, 吴旭升, 高嵬, 等. 非线性规划求解单位功率因数谐振结构参数方法[J]. 电力系统自动化, 2018, 42(6): 128-134. |
[12] | GAO Jianxin, WU Xusheng, GAO Wei, et al. Non-linear programming method for solving parameters of unity power factor resonant converter[J]. Automation of Electric Power Systems, 2018, 42(6): 128-134. |
[13] | 赵志斌, 王春芳, 骆彬, 等. 单管感应电能传输系统参数全局优化[J]. 西安交通大学学报, 2018, 52(8): 146-153. |
[13] | ZHAO Zhibin, WANG Chunfang, LUO Bin, et al. Global optimization for parameters in single switch inductive power transmission system[J]. Journal of Xi’an Jiaotong University, 2018, 52(8): 146-153. |
[14] | 朱国荣, 林鹏, 陆江华, 等. 无线能量传输系统双LCC谐振补偿电路研究[J]. 华中科技大学学报(自然科学版), 2017, 45(5): 104-109. |
[14] | ZHU Guorong, LIN Peng, LU Jianghua, et al. Research on double LCC compensation circuit in inductive power transfer system[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2017, 45(5): 104-109. |
[15] | 孙跃, 夏金凤, 唐春森, 等. 采用元胞遗传算法的无线电能传输网路径寻优[J]. 西安交通大学学报, 2017, 51(4): 30-36. |
[15] | SUN Yue, XIA Jinfeng, TANG Chunsen, et al. Path optimization for wireless power transfer networks with cellular genetic algorithm[J]. Journal of Xi’an Jiaotong University, 2017, 51(4): 30-36. |
[16] | REZAZADEH H, KHIALI-MIAB A. A two-layer genetic algorithm for the design of reliable cellular manufacturing systems[J]. International Journal of Industrial Engineering Computations, 2017, 8(3): 315-332. |
[17] | SONG K, LI Z J, DU Z J, et al. Design for constant output voltage and current controllability of primary side controlled wireless power transfer system[C]// 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). Chongqing, China: IEEE, 2017: 1-6. |
[18] | QU X H, CHU H J, WONG S C, et al. An IPT battery charger with near unity power factor and load-independent constant output combating design constraints of input voltage and transformer parameters[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7719-7727. |
/
〈 |
|
〉 |