基于群体划分的冠状病毒群体免疫优化算法
收稿日期: 2022-11-25
修回日期: 2023-01-30
录用日期: 2023-03-03
网络出版日期: 2023-03-13
基金资助
国家自然科学基金重点项目(91647209);浙江省自然科学基金项目(LGG18F030005);宁波市重大专项(2022Z176)
A Coronavirus Herd Immunity Optimizer Based on Swarm Division
Received date: 2022-11-25
Revised date: 2023-01-30
Accepted date: 2023-03-03
Online published: 2023-03-13
针对冠状病毒群体免疫优化(CHIO)算法收敛速度慢、求解精度低的问题,提出一种基于群体划分的冠状病毒群体免疫优化(SD-CHIO)算法.基于适应度均匀原则将初始群体划分为两部分,即全局寻优个体与局部寻优个体.对于全局寻优个体,在其位置更新中加入差分变异与漫反射变异策略,分别用来增强全局寻优个体之间的交流与群体多样性,从而提高算法的全局搜索能力.对于局部寻优个体,在其位置更新中引入一种自适应快速收敛策略:基于增量法进行精英预测,并加入一种自适应收敛系数使局部寻优个体能快速收敛至精英解,以提升算法的局部搜索能力.数值实验表明:SD-CHIO能够有效提高原算法的收敛速度与精度,并表现出明显优于其他元启发式算法的全局与局部搜索能力以及一定的工程价值.
关键词: 冠状病毒群体免疫优化算法; 群体划分; 自适应快速收敛; 差分变异; 漫反射变异
李博群, 孙志锋 . 基于群体划分的冠状病毒群体免疫优化算法[J]. 上海交通大学学报, 2024 , 58(4) : 555 -564 . DOI: 10.16183/j.cnki.jsjtu.2022.470
Aimed at the drawbacks of coronavirus herd immunity optimizer (CHIO), i.e., slow convergence speed and low optimization accuracy, a CHIO based on swarm division (SD-CHIO) is proposed. Based on the principle of uniform fitness, the initial swarm is divided into two parts, i.e., exploration individuals and exploitation individuals. For exploration individuals, differential mutation and diffuse reflection mutation are adopted in position update in order to enhance the communication among exploration individuals and swarm diversity respectively, so as to improve the exploration capability of the algorithm. For exploitation individuals, an adaptive fast convergence strategy is proposed in position update: elite prediction is conducted based on the incremental method, and an adaptive convergence coefficient is employed to ensure that exploitation individuals can quickly converge to the elite solution, which improves the exploitation capability of the algorithm. The numerical experiments demonstrate that SD-CHIO significantly improves the convergence speed and accuracy of the conventional algorithm, exhibiting better exploration and exploitation capabilities than other meta-heuristic algorithms do as well as certain value in engineering.
[1] | TAYARANI-N M H, YAO X, XU H M. Meta-heuristic algorithms in car engine design: A literature survey[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 609-629. |
[2] | 杜晓昕, 王浩, 崔连和, 等. 基于聚类和探测精英引导的蜻蜓算法[J]. 浙江大学学报: 工学版, 2022, 56(5): 977-986. |
DU Xiaoxin, WANG Hao, CUI Lianhe, et al. Dragonfly algorithm based on clustering and detection elite guidance[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 977-986. | |
[3] | BONYADI M R, MICHALEWICZ Z. Stability analysis of the particle swarm optimization without stagnation assumption[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 814-819. |
[4] | HAMZA N M, ESSAM D L, SARKER R A. Constraint consensus mutation-based differential evolution for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 447-459. |
[5] | 杜振鑫, 韩德志, 刘广钟, 等. 一种逐步加强开采的人工蜂群算法[J]. 上海交通大学学报, 2018, 52(1): 96-102. |
DU Zhenxin, HAN Dezhi, LIU Guangzhong, et al. Artificial bee colony algorithm with gradually enhanced exploitation[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 96-102. | |
[6] | MIRJALILI S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing & Applications, 2016, 27(4): 1053-1073. |
[7] | MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. |
[8] | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
[9] | MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. |
[10] | AL-BETAR M A, ALYASSERI Z A A, AWADALLAH M A, et al. Coronavirus herd immunity optimizer (CHIO)[J]. Neural Computing & Applications, 2021, 33(10): 5011-5042. |
[11] | DALBAH L M, AL-BETAR M A, AWADALLAH M A, et al. A modified coronavirus herd immunity optimizer for capacitated vehicle routing problem[J]. Journal of King Saud University-Computer & Information Sciences, 2022, 34(8): 4782-4795. |
[12] | DALBAH L M, AL-BETAR M A, AWADALLAH M A, et al. A coronavirus herd immunity optimization (CHIO) for travelling salesman problem[C]// International Conference on Innovative Computing & Communications. Singapore: Springer, 2022: 717-729. |
[13] | ALQARNI M. Sodium sulfur batteries allocation in high renewable penetration microgrids using coronavirus herd immunity optimization[J]. Ain Shams Engineering Journal, 2021, 13(2): 1-14. |
[14] | ALWESHAH M, ALKHALAILEH S, AL-BETAR M A, et al. Coronavirus herd immunity optimizer with greedy crossover for feature selection in medical diagnosis[J]. Knowledge-Based Systems, 2022, 235: 107629. |
[15] | NADERIPOUR A, ABDULLAH A, MARZBALI M H, et al. An improved corona-virus herd immunity optimizer algorithm for network reconfiguration based on fuzzy multi-criteria approach[J]. Expert Systems with Applications, 2022, 187: 115914. |
[16] | 夏学文, 刘经南, 高柯夫, 等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015, 38(7): 1397-1407. |
XIA Xuewen, LIU Jingnan, GAO Kefu, et al. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Chinese Journal of Computers, 2015, 38(7): 1397-1407. | |
[17] | TANG K, YAO X, SUGANTHAN P N, et al. Benchmark functions for the CEC’2008 special session and competition on large scale global optimization[R]. Taiwan: National Chiao Tung University, 2007. |
[18] | KUMAR A, PRICE K V, MOHAMED A W, et al. Problem definitions and evaluation criteria for the CEC 2022 special session and competition on single objective bound constrained numerical optimization[R]. Singapore: Nanyang Technological University, 2021. |
[19] | XIONG G J, ZHANG J, YUAN X F, et al. Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm[J]. Solar Energy, 2018, 176: 742-761. |
/
〈 |
|
〉 |