机械与动力工程

淬熄高度和空气分配比例对RQL燃烧室燃烧特性的影响

展开
  • 沈阳航空航天大学 航空发动机学院; 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136
惠 蕾(1998-),硕士生,从事燃烧室的设计和分析技术研究.
刘爱虢,教授,电话(Tel.):024-89728892;E-mail:agliu@sau.edu.cn.

收稿日期: 2022-06-06

  修回日期: 2022-10-31

  录用日期: 2022-10-31

  网络出版日期: 2023-03-13

基金资助

沈阳市科技计划项目(22-322-3-30);辽宁省教育厅高等学校基本科研项目(通航专项)(LJKZ0225)

Influence of Quenching Height and Air Distribution Ratio on Combustion Characteristics of RQL Combustor

Expand
  • School of Aero-Engine; Liaoning Key Laboratory of Advanced Measurement and Test Technique for Aviation Propulsion Systems, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2022-06-06

  Revised date: 2022-10-31

  Accepted date: 2022-10-31

  Online published: 2023-03-13

摘要

基于富油/淬熄/贫油(RQL)技术原理,设计一种燃气轮机低排放燃烧室.在保持燃烧室进口参数不变的前提下,研究不同淬熄结构高度及空气流量分配比例对燃烧室内流场、温度场及污染物生成特性的影响.结果表明:淬熄结构高度和空气分配比例是影响燃烧室燃烧性能的重要参数,随着淬熄结构高度的降低,燃烧室出口氮氧化物NOx的排放量增加;随着富油区主燃孔与淬熄空气质量流量的空气分配比例降低,燃烧室出口NOx的排放量先降低后增加,存在一个最佳的空气分配比例使NOx排放量最低;热力型NOx的生成量与温度高于 1 900 K的区域大小和最高燃气温度存在直接关系.基于此设计的燃烧室在所研究的工况下,最低NOx排放量可低于35 mg/m3,达到了低污染燃烧室排放标准.

本文引用格式

惠蕾, 刘爱虢, 吴小取, 张云杰, 曾文 . 淬熄高度和空气分配比例对RQL燃烧室燃烧特性的影响[J]. 上海交通大学学报, 2024 , 58(3) : 312 -323 . DOI: 10.16183/j.cnki.jsjtu.2022.197

Abstract

Based on the principle of the rich-burn/quench/lean-burn (RQL) technology, a low emission combustion chamber for gas turbine was designed. The effects of different heights of quenching structure and distribution ratios of the air flow on the flow field, temperature field, and pollutant formation characteristics of combustion chamber were studied under the premise of keeping the inlet parameters of combustion chamber unchanged. The results show that the height of quenching structure and the proportion of air distribution are important parameters affecting the combustion performance of the combustion chamber. With the decrease of the height of quenching structure, the NOx emission increases at the exit of the combustion chamber. The NOx emission from combustion chamber outlet first decreases and then increases with the decrease of the proportion of air mass flow from the main combustion hole to the fired air mass flow in oil-rich areas, and an optimal proportion of air mass flow makes the NOx minimum. The production of thermal NOx is directly related to the size of the region with a temperature higher than 1 900 K and the maximum gas temperature. The designed combustion chamber has a minimum NOx emission of less than 35 mg/m3 under the studied working conditions, which achieves the emission standard of a low pollution combustion chamber.

参考文献

[1] MOSIER S, PIERCE R M. Advanced combustion systems for stationary gas turbine engines[R]. USA: Environmental Protection Agency, 1980.
[2] MALECKI R E, RHIE C M, MCKINNEY R G, et al. Application of an advanced CFD-based analysis system to the PW6000 combustor to optimize exit temperature distribution: Part I—Description and validation of the analysis tool[C]// Proceedings of ASME Turbo Expo 2001:Power for Land, Sea, and Air. New Orleans, Louisiana, USA: ASME, 2014: V002T02A029.
[3] SAMUELSEN S. The gas turbine handbook[M]. Morgantown: Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2006.
[4] FANTOZZI F, LARANCI P, BIDINI G. CFD simulation of biomass pyrolysis syngas vs. natural gas in a microturbine annular combustor[C]// Proceedings of ASME Turbo Expo 2010:Power for Land, Sea, and Air. Glasgow, UK: ASME, 2010: 649-658.
[5] LARANCI P, ZAMPILLI M, D’AMICO M, et al. Geometry optimization of a commercial annular RQL combustor of a micro gas turbine for use with natural gas and vegetal oils[J]. Energy Procedia, 2017, 126: 875-882.
[6] 金明, 袁逸人, 张自来, 等. 不同长高比RQL燃烧室燃烧和排放特性研究[J]. 动力工程学报, 2019, 39(12): 966-972.
  JIN Ming, YUAN Yiren, ZHANG Zilai, et al. Combustion and emission characteristics of a RQL combustor at different length-height ratios[J]. Journal of Chinese Society of Power Engineering, 2019, 39(12): 966-972.
[7] 金明, 张亮, 吉雍彬, 等. 焠熄孔排布对RQL燃烧室流场影响的PIV实验研究[J]. 工程热物理学报, 2019, 40(12): 2912-2918.
  JIN Ming, ZHANG Liang, JI Yongbin, et al. PIV experimental study on the influence of orifices distribution on the RQL combustor flow field[J]. Journal of Engineering Thermophysics, 2019, 40(12): 2912-2918.
[8] LEONG M Y, SAMUELSEN G S, HOLDEMAN J D. Optimization of jet mixing into a rich, reacting crossflow[J]. Journal of Propulsion and Power, 2000, 16(5): 729-735.
[9] GE B, JI Y B, ZANG S S, et al. Investigation of the combustion performance in a three-nozzle RQL combustor[C]// Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, South Korea: ASME, 2016: 57308.
[10] 张亮, 吉雍彬, 葛冰, 等. 不同淬熄结构下RQL燃烧室流场特性的数值研究[J]. 航空动力学报, 2019, 34(8): 1688-1698.
  ZHANG Liang, JI Yongbin, GE Bing, et al. Numerical study on flow field characteristics of RQL combustor under different quenching structures[J]. Journal of Aerospace Power, 2019, 34(8): 1688-1698.
[11] 吉雍彬, 葛冰, 毛荣海, 等. 富油/焠熄/贫油(RQL)燃烧室燃烧和排放特性的实验研究[J]. 推进技术, 2017, 38(6): 1335-1342.
  JI Yongbin, GE Bing, MAO Ronghai, et al. Experimental investigation on combustion and emission characteristics of rich-burn/quick-quench/lean-burn(RQL) combustor[J]. Journal of Propulsion Technology, 2017, 38(6): 1335-1342.
[12] 王丹丹. 低污染模型燃烧室的数值计算[D]. 沈阳: 沈阳航空航天大学, 2011.
  WANG Dandan. Numerical calculation of low pollution model combustion chamber[D]. Shenyang: Shen-yang Aerospace University, 2011.
[13] 王丹丹, 王成军, 吴振宇. RQL模型燃烧室数值研究[J]. 航空发动机, 2011, 37(5): 21-23.
  WANG Dandan, WANG Chengjun, WU Zhenyu. Numerical study of RQL model combustor[J]. Aeroengine, 2011, 37(5): 21-23.
[14] 蒋波, 何小民, 金义, 等. 低排放驻涡燃烧室冷态流场特性试验[J]. 航空动力学报, 2013, 28(8): 1719-1726.
  JIANG Bo, HE Xiaomin, JIN Yi, et al. Experimental investigation on cold flow field characteristics of low emission trapped-vortex combustor[J]. Journal of Aerospace Power, 2013, 28(8): 1719-1726.
[15] 蒋波, 何小民, 金义, 等. 采用钝体式孔板淬熄的富油-淬熄-贫油驻涡燃烧室排放性能试验研究[J]. 推进技术, 2016, 37(4): 675-683.
  JIANG Bo, HE Xiaomin, JIN Yi, et al. Emission characteristics of a rich-quench-lean trapped-vortex combustor utilizing quenching device of orifice plate combined with bluff-body[J]. Journal of Propulsion Technology, 2016, 37(4): 675-683.
[16] 金义, 何小民, 蒋波. 富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J]. 航空动力学报, 2011, 26(5): 1031-1036.
  JIN Yi, HE Xiaomin, JIANG Bo. Experimental study on emission performance of rich-burn quick-quench lean-burn (RQL) trapped-vortex combustor[J]. Journal of Aerospace Power, 2011, 26(5): 1031-1036.
[17] YANG Y D, LIU A G, WANG X C, et al. Influence of structure on the combustion characteristics of a small aero-gas turbine engine combustor[J]. Fuel, 2022, 321: 124018.
[18] 王梅娟, 成胜军, 宋双文, 等. 燃烧室进口流场对某回流燃烧室性能影响的数值计算[J]. 航空动力学报, 2018, 33(6): 1281-1289.
  WANG Meijuan, CHENG Shengjun, SONG Shuangwen, et al. Numerical simulation on influence of flow field of combustor inlet on a certain reversed-flow combustor performance[J]. Journal of Aerospace Power, 2018, 33(6): 1281-1289.
[19] 林志勇, 颜颖文, 李京华. 辅助动力装置环形回流燃烧室的数值研究[J]. 航空动力学报, 2012, 27(8): 1726-1733.
  LIN Zhiyong, YAN Yingwen, LI Jinghua. Numerical study of auxiliary power unit annular backflow combustor[J]. Journal of Aerospace Power, 2012, 27(8): 1726-1733.
文章导航

/