船舶海洋与建筑工程

环境载荷逆向识别与虚拟模型试验方法

展开
  • 上海交通大学 海洋工程国家重点实验室,上海 200240
    上海交通大学 崖州湾深海科技研究院,海南 三亚 572000
李 旭(1993-),博士生,从事海洋工程模型试验方法研究.

收稿日期: 2022-10-12

  修回日期: 2022-12-30

  录用日期: 2023-03-03

  网络出版日期: 2023-03-15

基金资助

国家自然科学基金(52031006);国家自然科学基金(51879158);海南省自然科学基金青年基金项目(521QN275)

Inverse Reconstruction of Environmental Loads and Virtual Model Test

Expand
  • State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    Yazhou Bay Institute of Deepsea Technology, Shanghai Jiao Tong University, Sanya 572000, Hainan, China

Received date: 2022-10-12

  Revised date: 2022-12-30

  Accepted date: 2023-03-03

  Online published: 2023-03-15

摘要

提出一种应用于混合模型试验的环境载荷逆向识别与虚拟模型试验方法,可以逆向识别截断模型试验中的环境载荷,进而开展截断水深与全水深虚拟模型试验.环境载荷直接从物理模型试验中分离得到,因此该载荷考虑到了平台六自由度运动之间的耦合作用、破浪砰击等强非线性作用以及流体对浮体的黏性力作用.为验证方法准确性,开展风浪流模型试验,并将虚拟模型试验结果与物理模型试验数据进行比较.研究结果表明,环境载荷逆向识别方法可以准确识别风浪流模型试验的环境载荷.

本文引用格式

李旭, 肖龙飞, 魏汉迪, 吴文成, 朱子扬, 李琰 . 环境载荷逆向识别与虚拟模型试验方法[J]. 上海交通大学学报, 2024 , 58(2) : 141 -146 . DOI: 10.16183/j.cnki.jsjtu.2022.398

Abstract

Novel methods of inverse reconstruction of environmental loads and virtual model test for hybrid model test are proposed. The environmental loads are extracted from the physical truncated model test, considering the nonlinear effects such as coupling effect among the six-degrees-of-freedom (6 DOF) motions and wave slamming, and viscous force of the fluid. The loads can be further applied to the numerical model in virtual wave basin to conduct virtual model test with truncated and full-depth mooring system. Wave basin tests under combined wave, wind, and current condition are conducted to validate the proposed methods, and the results show that the environmental loads can be accurately reconstructed from the physical model tests.

参考文献

[1] 杨晓彤, 赵伟文, 万德成. 规则波下半潜式平台波浪爬升数值模拟[J]. 水动力学研究与进展, 2021, 36 (1): 48-55.
  YANG Xiaotong, ZHAO Weiwen, WAN Decheng. Numerical simulation of wave run-up of semi-submersible offshore platform under regular wave[J]. Chinese Journal of Hydrodynamics, 2021, 36(1): 48-55.
[2] 白云山. 半潜式平台水动力性能分析与优化设计[D]. 大连: 大连理工大学, 2014.
  BAI Yunshan. Analysis and optimization design of hydrodynamic performance of SEMI[D]. Dalian: Dalian University of Technology, 2014.
[3] LI X, WEI H, XIAO L, et al. Study on the effects of mooring system stiffness on air gap response[J]. Ocean Engineering, 2021, 239: 109798.
[4] 魏汉迪, 肖龙飞, 田新亮, 等. 半潜式平台运动的非线性耦合数学模型研究[J]. 中国造船, 2017, 58: 28-35.
  WEI Handi, XIAO Longfei, TIAN Xinliang, et al. Nonlinear coupling model of semi-submersible platform under regular and irregular waves[J]. Ship Building of China, 2017, 58: 28-35.
[5] WAALS O J, PHADKE A C, BULTEMA S. Flow induced motions on multi column floaters[C]// International Conference on Offshore Mechanics and Arctic Engineering. San Diego, California, USA: ASME, 2007, 42673: 669-678.
[6] STANSBERG C T, ORMBERG H, ORITSLAND O. Challenges in deep water experiments: Hybrid approach[J]. Journal of Offshore Mechaniccs Arctic Engineering, 2002, 124(2): 90-96.
[7] DET NORSKE VERITAS. Position mooring: DNVGL-OS-E301[S]. Norway: DNV G L, 2015.
[8] STRANG G. Computational science and engineering[M]. Wellesley, USA: Wellesley-Cambridge Press, 2007.
[9] National Aeronautics and Space Administration. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems: TR R-315[S]. Washington D.C., USA: NASA, 1969.
[10] DET NORSKE VERITAS. Sesam user manual: Wave load and stability analysis of fixed and floating structures[M]. Norway: DNV G L, 2014.
文章导航

/