基于多光谱阵列的C4F7N/CO2混合气体局部放电光学特征分析与诊断
收稿日期: 2022-07-25
修回日期: 2022-09-25
录用日期: 2022-11-23
网络出版日期: 2023-03-10
基金资助
国家自然科学基金(62075045)
Optical Feature Analysis and Diagnosis of Partial Discharge in C4F7N/CO2 Based on Multispectral Array
Received date: 2022-07-25
Revised date: 2022-09-25
Accepted date: 2022-11-23
Online published: 2023-03-10
局部放电(PD)的光学检测是反映设备绝缘状态的重要方法.C4F7N/CO2混合气体是目前最具有潜力的SF6替代气体,但是缺乏针对该混合气体光学PD特性和诊断方法的研究.构建了一个可采集7个特征波段的PD多光谱阵列检测平台,制作了4种PD缺陷,分析了5种不同比例的C4F7N/CO2混合气体和纯SF6气体条件下多光谱PD特征在相位分布、能量分布和特征堆叠图的异同,提出了一种基于多光谱特征(MF)和最近邻算法(KNN)的PD诊断新方法.实验结果表明,纯SF6故障识别准确率可达96.2%;C4F7N/CO2混合气体的识别率在88%以上,最高准确率为91.1%.该方法对环保型气体绝缘设备的PD诊断具有指导意义,也为传统的PD检测和诊断提供了新思路.
李泽, 钱勇, 臧奕茗, 周小丽, 盛戈皞, 江秀臣 . 基于多光谱阵列的C4F7N/CO2混合气体局部放电光学特征分析与诊断[J]. 上海交通大学学报, 2023 , 57(9) : 1176 -1185 . DOI: 10.16183/j.cnki.jsjtu.2022.299
Optical detection of partial discharge (PD) is an important way to reflect the insulation status of equipment. C4F7N/CO2 gas mixture is one of the most potential substitutes for SF6 at present, but there is a lack of research on its optical PD characteristics and diagnostic methods. In this paper, a PD multispectral array detection platform that can collect 7 characteristic bands is constructed, and 4 kinds of PD defects are produced. The similarities and differences of the PD multispectral characteristics in phase distribution, energy distribution, and feature stacking map under the conditions of 5 different ratios of C4F7N/CO2 gas mixture and pure SF6 gas are analyzed. Finally, a novel method of PD diagnosis based on multispectral features (MF) and k-nearest neighbors (KNN) is proposed. The experimental results show that the fault recognition accuracy in pure SF6 can reach 96.2%. The recognition rate of C4F7N/CO2 gas mixture is above 88%, and the highest accuracy rate is 91.1%. This method has a guiding significance for the PD diagnosis of environmentally friendly gas-insulated equipment, and provides a new route for traditional PD detection and diagnosis.
[1] | 高克利, 颜湘莲, 王浩, 等. 环保型气体绝缘输电线路(GIL)技术发展[J]. 高电压技术, 2018, 44(10): 3105-3113. |
[1] | GAO Keli, YAN Xianglian, WANG Hao, et al. Progress in environment-friendly gas-insulated transmission line(GIL)[J]. High Voltage Engineering, 2018, 44(10): 3105-3113. |
[2] | 臧奕茗, 钱勇, 陈孝信, 等. 基于非下采样Contourlet变换的光电图像融合方法在GIL局放检测中的应用[J]. 高电压技术, 2021, 47(2): 519-528. |
[2] | ZANG Yiming, QIAN Yong, CHEN Xiaoxin, et al. Application of photoelectric image fusion method based on non-subsampled contourlet transform in GIL partial discharge detection[J]. High Voltage Engineering, 2021, 47(2): 519-528. |
[3] | 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 2263-2277. |
[3] | TANG Zhiguo, TANG Mingze, LI Jinzhong, et al. Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 2263-2277. |
[4] | 缪金, 陈平, 顾寅, 等. 荧光光纤局部放电检测的优化匹配方法研究[J]. 电工电能新技术, 2021, 40(7): 62-69. |
[4] | MIAO Jin, CHEN Ping, GU Yin, et al. Influence factors and optimization of partial discharge detection based on plastic fluorescent bare fiber[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(7): 62-69. |
[5] | 李军浩, 韩旭涛, 刘泽辉, 等. 电气设备局部放电检测技术述评[J]. 高电压技术, 2015, 41(8): 2583-2601. |
[5] | LI Junhao, HAN Xutao, LIU Zehui, et al. Review on partial discharge measurement technology of electrical equipment[J]. High Voltage Engineering, 2015, 41(8): 2583-2601. |
[6] | 钱勇, 张悦, 刘伟, 等. T型GIS模型中局部放电光学信号传播特性仿真[J]. 高电压技术, 2019, 45(5): 1510-1517. |
[6] | QIAN Yong, ZHANG Yue, LIU Wei, et al. Simulation on the propagation of the optical signal of partial discharge in T-shaped GIS model[J]. High Voltage Engineering, 2019, 45(5): 1510-1517. |
[7] | ZANG Y M, QIAN Y, WANG H, et al. A novel optical localization method for partial discharge source using ANFIS virtual sensors and simulation fingerprint in GIL[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. |
[8] | WENGER P, BELTLE M, TENBOHLEN S, et al. Combined characterization of free-moving particles in HVDC-GIS using UHF PD, high-speed imaging, and pulse-sequence analysis[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1540-1548. |
[9] | REN M, ZHOU J R, YANG S J, et al. Optical partial discharge diagnosis in SF6 gas-insulated system with SiPM-based sensor array[J]. IEEE Sensors Journal, 2018, 18(13): 5532-5540. |
[10] | 周文俊, 郑宇, 高克利, 等. 环保型绝缘气体电气特性研究进展[J]. 高电压技术, 2018, 44(10): 3114-3124. |
[10] | ZHOU Wenjun, ZHENG Yu, GAO Keli, et al. Progress in researching electrical characteristics of environment-friendly insulating gases[J]. High Voltage Engineering, 2018, 44(10): 3114-3124. |
[11] | 颜湘莲, 郑宇, 黄河, 等. C4F7N/CO2混合气体对局部不均匀电场的敏感特性[J]. 电工技术学报, 2020, 35(1): 43-51. |
[11] | YAN Xianglian, ZHENG Yu, HUANG He, et al. Sensitivity of C4F7N/CO2 Gas Mixture to Partial Inhomogeneous Electric FieldFull text replacement[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 43-51. |
[12] | 张晓星, 张引, 傅明利, 等. 基于紫外光谱的C4F7N/CO2混合气体混合比检测[J]. 高电压技术, 2019, 45(4): 1034-1039. |
[12] | ZHANG Xiaoxing, ZHANG Yin, FU Mingli, et al. Mixing ratio detection for C4F7N/CO2 mixed gas based on ultraviolet spectroscopy[J]. High Voltage Engineering, 2019, 45(4): 1034-1039. |
[13] | 张晓星, 陈琪, 张季, 等. 高气压下环保型C4F7N/CO2混合气体工频击穿特性[J]. 电工技术学报, 2019, 34(13): 2839-2845. |
[13] | ZHANG Xiaoxing, CHEN Qi, ZHANG Ji, et al. Power frequency breakdown characteristics of EnvironmentalFriendly C4F7N/CO2 gas mixtures under high pressure conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2839-2845. |
[14] | ONO R, ODA T. Measurement of hydroxyl radicals in pulsed corona discharge[J]. Journal of Electrostatics, 2002, 55(3/4): 333-342. |
[15] | KIEFFEL Y. Characteristics of g3-an alternative to SF6[C]∥2016 IEEE International Conference on Dielectrics. Montpellier, France: IEEE, 2016: 880-884. |
[16] | LI Z, QIAN Y, WANG H, et al. A novel image-orientation feature extraction method for partial discharges[J]. IET Generation, Transmission & Distribution, 2022, 16(6): 1139-1150. |
[17] | 张磊, 刘建伟, 罗雄麟. 基于KNN和RVM的分类方法: KNN-RVM分类器[J]. 模式识别与人工智能, 2010, 23(3): 376-384. |
[17] | ZHANG Lei, LIU Jianwei, LUO Xionglin. KNN and RVM based classification method: KNN-RVM classifier[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 376-384. |
[18] | 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. |
[18] | CHEN Xi, LUO Gaochao, CAO Jie, et al. Development stage identification of XLPE cable air-gap discharge based on improved K-nearest neighbor algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5015-5024. |
[19] | 王栋璀, 丁云飞, 朱晨烜. 基于中智KNN的齿轮箱故障诊断方法[J]. 振动与冲击, 2019, 38(20): 148-153. |
[19] | WANG Dongcui, DING Yunfei, ZHU Chenxuan. A fault diagnosis method for gearbox based on neutrosophic K-Nearest Neighbor[J]. Journal of Vibration and Shock, 2019, 38(20): 148-153. |
[20] | 刘凡, 张昀, 姚晓, 等. 基于K近邻算法的换流变压器局部放电模式识别[J]. 电力自动化设备, 2013, 33(5): 89-93. |
[20] | LIU Fan, ZHANG Yun, YAO Xiao, et al. Recognition of PD mode based on KNN algorithm for converter transformer[J]. Electric Power Automation Equipment, 2013, 33(5): 89-93. |
/
〈 |
|
〉 |