电子信息与电气工程

基于SE(3)的鲁棒自适应算法及其在SINS/DVL中的应用

展开
  • 海军工程大学 电气工程学院,武汉 430033
钱镭源(1996-),博士生,从事重力辅助惯导及组合导航方面的研究.

收稿日期: 2022-12-12

  修回日期: 2023-01-06

  录用日期: 2023-03-03

  网络出版日期: 2023-03-10

基金资助

国家自然科学基金(42274013);国家自然科学基金(61873275)

Robust Adaptive Algorithm Based on SE(3) and Its Application in SINS/DVL

Expand
  • School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2022-12-12

  Revised date: 2023-01-06

  Accepted date: 2023-03-03

  Online published: 2023-03-10

摘要

针对复杂环境下SINS/DVL组合导航易受干扰的问题,提出了基于SE(3)的鲁棒自适应算法.通过将李群/李代数理论和鲁棒自适应策略引入正交变换容积卡尔曼滤波(TCKF),使TCKF的估计状态纳入特殊欧氏群,改善了状态空间不一致问题.并利用卡方检验和Huber方法,在量测更新时根据新息向量自适应地重构异常量测.SINS/DVL实验结果表明,所提方法具有比传统方法更优的空间一致性和鲁棒性.

本文引用格式

钱镭源, 覃方君, 李开龙, 朱天高 . 基于SE(3)的鲁棒自适应算法及其在SINS/DVL中的应用[J]. 上海交通大学学报, 2024 , 58(4) : 498 -510 . DOI: 10.16183/j.cnki.jsjtu.2022.513

Abstract

Aimed at the problem that SINS/DVL integrated navigation is vulnerable to interference in complex environment, a robust adaptive algorithm based on SE(3) is proposed. By introducing the Lie group/Lie algebra theory and the robust adaptive strategy into the orthogonal transformed cubature Kalman filter (TCKF), the estimated states of TCKF are made to incorporate the Special Euclidean group (SE(3)), and the state space inconsistency problem is improved. The anomaly measurement is adaptively reconstructed based on the innovation vector, by using the chi-square test and the Huber method. The experimental results of SINS/DVL show that the proposed method has a better spatial consistency and robustness than the traditional methods.

参考文献

[1] 高红莲, 尤杰, 曹松银. 基于PF-UKF组合滤波的SINS/GPS组合导航系统空中对准方法[J]. 上海交通大学学报, 2022, 56(11): 1447-1452.
  GAO Honglian, YOU Jie, CAO Songyin. In-flight alignment method of integrated SINS/GPS navigation system based on combined PF-UKF filter[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1447-1452.
[2] ZHU J, LI A, QIN F, et al. A new robust adaptive filter aided by machine learning method for SINS/DVL integrated navigation system[J]. Sensors, 2022, 22(10): 3792-3813.
[3] YAR Y, XU X, YANG D, et al. An IMM-UKF aided SINS/USBL calibration solution for underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3740-3747.
[4] NORDIN M H, SHARMA S, KHAN A, et al. Collaborative unmanned vehicles for inspection, maintenance, and repairs of offshore wind turbines[J]. Drones, 2022, 6(6): 137-163.
[5] GAN W, ZHU D, JI D. QPSO-model predictive control-based approach to dynamic trajectory tracking control for unmanned underwater vehicles[J]. Ocean Engineering, 2018, 158: 208-220.
[6] 张文佳, 马辛. 深空探测器接近段自主导航的滑动窗口自适应滤波方法[J]. 上海交通大学学报, 2022, 56(11): 1461-1469.
  ZHANG Wenjia, MA Xin. A sliding window adaptive filtering algorithm for autonomous navigation of the approach phase of deep space probe[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1461-1469.
[7] 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603.
  JIANG Junhao, CHEN Gang. Dynamic model predictive control method for steering control of driving robot[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 594-603.
[8] ZHAO W, ZHAO H, LIU G, et al. ANFIS-EKF-based single-beacon localization algorithm for AUV[J]. Remote Sensing, 2022, 14(20): 5281-5301.
[9] AL B N, GAVRILOV A. A novel approach for aiding unscented Kalman filter for bridging GNSS outages in integrated navigation systems[J]. Navigation, 2021, 68(3): 521-539.
[10] YANG J, GAO S, LI G, et al. An adaptive cubature Kalman filtering algorithm based on variational mode decomposition for pulsar navigation[J]. IET Communications, 2022, 16(16): 1982-1992.
[11] 秦康, 董新民, 陈勇, 等. 基于正交变换的改进CKF算法[J]. 控制与决策, 2018, 33(2): 330-336.
  QIN Kang, DONG Xinmin, CHEN Yong, et al. Modified CKF algorithm based on orthogonal transformation[J]. Control and Decision, 2018, 33(2): 330-336.
[12] 赵丽, 薛建平. 基于采样点正交变换的改进CKF算法[J]. 计算机工程与应用, 2018, 54(18): 45-51.
  ZHAO Li, XUE Jianping. Improved CKF based on orthogonal transformation[J]. Computer Engineering and Applications, 2018, 54(18): 45-51.
[13] 严恭敏, 严卫生, 徐德民. 基于欧拉平台误差角的SINS非线性误差模型研究[J]. 西北工业大学学报, 2009, 27(4): 511-516.
  YAN Gongmin, YAN Weisheng, XU Demin. A SINS nonlinear error model reflecting better characteristics of SINS errors[J]. Journal of Northwestern Polytechnical University, 2009, 27(4): 511-516.
[14] 王茂松, 吴文启, 何晓峰, 等. 状态变换卡尔曼滤波的进一步解释及应用[J]. 中国惯性技术学报, 2019, 27(4): 499-504.
  WANG Maosong, WU Wenqi, HE Xiaofeng, et al. Further explanation and application of state transformation extended Kalman filter[J]. Journal of Chinese Inertial Technology, 2019, 27(4): 499-504.
[15] ISERLES A, MUNTHE K H Z, NORSETT S P, et al. Lie-group methods[J]. Acta Numerica, 2000, 9: 215-365.
[16] CUI J, WANG M, WU W, et al. Lie group based nonlinear state errors for MEMS-IMU/GNSS/magnetometer integrated navigation[J]. Journal of Navigation, 2021, 74(4): 887-900.
[17] CHANG L, DI J, QIN F. Inertial based integration with transformed INS mechanization in earth frame[J]. IEEE/ASME Transactions on Mechatronics. 2021, 27: 1738-1749.
[18] QIAN L, QIN F, LI K, et al. Research on the necessity of lie group strapdown inertial integrated navigation error model based on Euler angle[J]. Sensors, 2022, 22(20): 7742-7761.
[19] AXEL B, SILVERE B. Invariant Kalman filtering[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 237-257.
[20] LUO Y, GUO C, LIU J. Equivariant filtering framework for inertial-integrated navigation[J]. Satellite Navigation. 2021, 2: 1-17.
[21] WANG M, WU W, ZHOU P, et al. State transformation extended Kalman filter GPS/SINS tightly coupled integration[J]. GPS Solution. 2018, 22: 1-12.
[22] DU S, HUANG Y, LIN B, et al. A lie group manifold-based nonlinear estimation algorithm and its application to low-accuracy SINS/GNSS integrated navigation[J]. IEEE Transactions on Instrumentation and Measurement. 2022, 71: 1-27.
[23] ZHU T, LI A, LI K, et al. The quaternion based error model based on SE(3) of the INS[J]. IEEE Sensors Journal, 2022, 22(13): 13067-13077.
[24] FAN X, WANG G, HAN J, et al. Interacting multiple model based on maximum correntropy Kalman filter[J]. IEEE Transactions on Circuits and Systems II—Express Briefs, 2021, 68(8): 3017-3021.
[25] ZHU B, CHANG L, XU J, et al. Huber-based adaptive unscented Kalman filter with non-Gaussian measurement noise[J]. Circuits, Systems, and Signal Processing, 2018, 37(9): 3842-3861.
[26] 张文杰, 王世元, 冯亚丽, 等. 基于Huber的高阶容积卡尔曼跟踪算法[J]. 物理学报, 2016, 65(8): 358-366.
  ZHANG Wenjie, WANG Shiyuan, FENG Yali, et al. Huber-based high-degree cubature Kalman tracking algorithm[J]. Acta Physica Sinica, 2016, 65(8): 358-366.
[27] 黄玉, 武立华, 孙枫. 基于Huber M估计的鲁棒Cubature卡尔曼滤波算法[J]. 控制与决策, 2014, 29(3): 572-576.
  HUANG Yu, WU Lihua, SUN Feng. Robust Cubature Kalman filter based on Huber M estimator[J]. Control and Decision, 2014, 29(3): 572-576.
[28] CANTELOBRE T, CHAHBAZIAN C, CROUX A, et al. A real-time unscented Kalman filter on manifolds for challenging AUV navigation[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Providence, Las Vegas, NV, USA: IEEE, 2020: 2309-2316.
[29] LUO L, ZHANG Y, FANG T, et al. A new robust Kalman filter for SINS/DVL integrated navigation system.[J]. IEEE Access, 2019, 7: 51386-51395.
[30] 朱天高, 刘勇, 李开龙, 等. 基于欧拉角的李群捷联惯导误差模型分析与比较研究[J]. 系统工程与电子技术, 2023, 45(10): 3265-3273.
  ZHU Tiangao, LIU Yong, LI Kailong, et al. Analysis and comparison of Euler angles based error model based on Lie groups of the SINS[J]. Systems Engineering and Electronics, 2023, 45(10): 3265-3273.
[31] HUBER P J. Robust estimation of a location parameter[J]. The Annals of Mathematical Statistics, 1964, 35(1): 73-101.
[32] HOU J, HE H, YANG Y, et al. A variational Bayesian and Huber-based robust square root cubature Kalman filter for lithium-ion battery state of charge estimation[J]. Energies, 2019, 12(9): 1717-1739.
文章导航

/