新型电力系统与综合能源

考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行

展开
  • 1.上海电力大学 电气工程学院,上海 200090
    2.华北电力大学 电气与电子工程学院,北京 102206
范 宏(1978-),副教授,从事综合能源系统规划及优化运行研究.
杨忠权,硕士生;E-mail:861161438@qq.com.

收稿日期: 2022-09-26

  修回日期: 2022-11-25

  录用日期: 2022-12-05

  网络出版日期: 2023-03-12

基金资助

国家自然科学基金(52077075)

Low Carbon Economic Operation of Hydrogen-Enriched Compressed Natural Gas Integrated Energy System Considering Step Carbon Trading Mechanism

Expand
  • 1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Received date: 2022-09-26

  Revised date: 2022-11-25

  Accepted date: 2022-12-05

  Online published: 2023-03-12

摘要

氢能是实现“双碳”目标的重要能源载体,碳捕集技术是能源行业减排的重要技术手段.将氢气、天然气掺混形成混氢天然气,可以实现氢能的有效输运与利用,同时应用碳捕集技术对火电机组进行改造,有助于推动可再生能源的大规模消纳并降低碳排放水平.在此背景下,建立制氢设备和燃料电池的精细模型,针对系统碳排放问题,建立碳捕集火电机组的碳排放、出力模型以及掺氢热电联产的数学模型,并引入阶梯式碳交易机制控制碳排放.基于此,以购能成本、碳排放成本、弃风成本和碳封存成本之和最低为目标,计及管网掺氢比、碳捕集等约束,建立混氢天然气综合能源系统优化调度模型,采用粒子群算法结合CPLEX求解.通过不同场景对所构建的模型进行分析,验证调度模型在推进低碳经济发展方面的优势.

本文引用格式

范宏, 杨忠权, 夏世威 . 考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行[J]. 上海交通大学学报, 2024 , 58(5) : 624 -635 . DOI: 10.16183/j.cnki.jsjtu.2022.377

Abstract

Hydrogen energy plays a crucial role in meeting the “carbon peaking and carbon neutrality” goals, and the carbon capture technology is a vital technique for emission reduction in the energy industry. Blending hydrogen with natural gas to produce hydrogen-enriched compressed natural gas (HCNG) facilitates the transportation and utilization of hydrogen energy. At the same time, applying the carbon capture technology to retrofit thermal power units can effectively promote the large-scale consumption of renewable energy and reduce carbon emissions. For this purpose, a detailed model of hydrogen production equipment and fuel cells is established. Then, aimed at the problem of system carbon emissions, a carbon emission and output model of carbon capture thermal power units and a mathematical model of hydrogen doped cogeneration are established, and a stepped carbon trading mechanism is introduced to control carbon emissions. Based on this, an optimal scheduling model for hydrogen-enriched compressed natural gas integrated energy system is established with the goal of minimizing the sum of energy purchase cost, carbon emission cost, wind abandonment cost, and carbon sequestration cost, and taking into account the constraints such as hydrogen blending ratio and carbon capture in the pipeline network, which is solved by using the particle swarm optimization algorithm in conjunction with CPLEX. The analysis of the models built in different scenarios verifies the advantages of the proposed scheduling model in low-carbon economy.

参考文献

[1] 杨金刚, 刘维妙, 李顺昕, 等. 风氢耦合发电系统优化运行策略与效益分析[J]. 电力建设, 2017, 38(1): 106-115.
  YANG Jingang, LIU Weimiao, LI Shunxin, et al. Optimal operation scheme and benefit analysis of wind-hydrogen power systems[J]. Electric Power Construction, 2017, 38(1): 106-115.
[2] 李天格, 胡志坚, 陈志, 等. 计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J]. 电力自动化设备, 2023, 43(1): 16-24.
  LI Tiange, HU Zhijian, CHEN Zhi, et al. Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J]. Electric Power Automation Equipment, 2023, 43(1): 16-24.
[3] 郑连华, 文中, 邱智武, 等. 计及光热电站和氢储能的综合能源系统低碳优化运行[J/OL]. 电测与仪表. http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html.
  ZHENG Lianhua, WEN Zhong, QIU Zhiwu, et al. Low-carbon optimized operation of an integrated energy system that takes into account solar thermal power plants and hydrogen storage[J/OL]. Electrical Measurement & Instrumentation. http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html.
[4] 陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2053.
  CHEN Dengyong, LIU Fang, LIU Shuai. Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46(6): 2042-2053.
[5] 邱玥, 周苏洋, 顾伟, 等. “碳达峰、碳中和” 目标下混氢天然气技术应用前景分析[J]. 中国电机工程学报, 2022, 42(4): 1301-1320.
  QIU Yue, ZHOU Suyang, GU Wei, et al. Analysis on the application prospect of mixed hydrogen natural gas technology under the goal of “peak carbon dioxide emissions and carbon neutrality”[J]. Proceedings of the CSEE, 2022, 42(4): 1301-1320.
[6] 陈启鑫, 康重庆, 夏清. 碳捕集电厂的运行机制研究与调峰效益分析[J]. 中国电机工程学报, 2010, 30(7): 22-28.
  CHEN Qixin, KANG Chongqing), XIA Qing. Study on operation mechanism of carbon capture power plant and analysis of peak regulation benefit[J]. Proceedings of the CSEE, 2010, 30(7): 22-28.
[7] 崔杨, 曾鹏, 王铮, 等. 考虑碳捕集电厂能量转移特性的弃风消纳多时间尺度调度策略[J]. 中国电机工程学报, 2021, 41(3): 946-960.
  CUI Yang, ZENG Peng, WANG Zheng, et al. Time-scale scheduling strategy of abandoning wind and eliminating Naduo considering energy transfer characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2021, 41(3): 946-960.
[8] 周任军, 肖钧文, 唐夏菲, 等. 电转气消纳新能源与碳捕集电厂碳利用的协调优化[J]. 电力自动化设备, 2018, 38(7): 61-67.
  ZHOU Renjun, XIAO Junwen, TANG Xiafei, et al. Coordinated optimization of carbon utilization between power-to-gas renewable energy accommodation and carbon capture power plant[J]. Electric Power Automation Equipment, 2018, 38(7): 61-67.
[9] 孙惠娟, 刘昀, 彭春华, 等. 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J]. 电网技术, 2021, 45(9): 3534-3544.
  SUN Huijuan, LIU Yun, PENG Chunhua, et al. Optimal scheduling of carbon-containing capture and waste incineration virtual power plant considering the cooperation of electricity to gas[J]. Power System Technology, 2021, 45(9): 3534-3544.
[10] 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41(3): 10-17.
  CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41(3): 10-17.
[11] 卢浩鹏, 谢丽蓉, 高伟. 计及碳交易的热电联产-储热-电锅炉风电消纳策略[J/OL]. 电测与仪表. http://kns.cnki.net/kcms/detail/23.1202.TH.20210831.1125.002.html.
  LU Haopeng, XIE Lirong, GAO Wei. Cogeneration-storage-electric boiler wind power consumption strategy with carbon trading[J/OL]. Electrical Measurement & Instrumentation. http://kns.cnki.net/kcms/detail/23.1202.TH.20210831.1125.002.html.
[12] 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40(19): 6132-6141.
  ZHANG Xiaohui, LIU Xiaoyan, ZHONG Jiaqing. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40(19): 6132-6141.
[13] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
  CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
[14] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
  WEI Fanrong, SUI Quan, LIN Xiangning, et al. Optimization strategy of coal-air hydrogen energy network scheduling considering efficiency characteristics of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[15] 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6): 1603-1613.
  SUI Quan, MA Xiao, WEI Fanrong, et al. Optimization strategy of day-ahead dispatching of energy network considering comprehensive utilization of heat and electricity of fuel cell[J]. Proceedings of the CSEE, 2019, 39(6): 1603-1613.
[16] 王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39(6): 1614-1626.
  WANG Zesen, SHI Yan, TANG Yanmei, et al. Low-carbon economic operation and energy efficiency analysis of comprehensive energy system considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(6): 1614-1626.
[17] 黄明, 吴勇, 文习之, 等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力, 2013, 33(4): 39-42.
  HUANG Ming, WU Yong, WEN Xizhi, et al. Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas & Heat, 2013, 33(4): 39-42.
[18] 乔伟艳, 张宁, 解东来. 天然气掺氢的混合工艺研究[J]. 煤气与热力, 2009, 29(8): 17-20.
  QIAO Weiyan, ZHANG Ning, XIE Donglai. Study on mixing process of hydrogen enriched natural gas[J]. Gas & Heat, 2009, 29(8): 17-20.
[19] 陈彬彬, 孙宏斌, 吴文传, 等. 综合能源系统分析的统一能路理论(三): 稳态与动态潮流计算[J]. 中国电机工程学报, 2020, 40(15): 4820-4830.
  CHEN Binbin, SUN Hongbin, WU Wenchuan, et al. Unified energy path theory for comprehensive energy system analysis (3): Steady-state and dynamic power flow calculation[J]. Proceedings of the CSEE, 2020, 40(15): 4820-4830.
[20] 陈瑜玮, 孙宏斌, 郭庆来. 综合能源系统分析的统一能路理论(五): 电-热-气耦合系统优化调度[J]. 中国电机工程学报, 2020, 40(24): 7928-7937.
  CHEN Yuwei, SUN Hongbin, GUO Qinglai. Energy circuit theory of integrated energy system analysis (V): Integrated electricity-heat-gas dispatch[J]. Proceedings of the CSEE, 2020, 40(24): 7928-7937.
文章导航

/