基于WRF-LES模式的大气边界层近地风场精细化模拟研究
收稿日期: 2022-10-20
修回日期: 2022-11-10
录用日期: 2022-11-17
网络出版日期: 2023-03-12
基金资助
国家自然科学基金(52122110);国家自然科学基金(42076210);国家自然科学基金(52108462);上海市自然科学基金(21ZR1428900);上海市青年科技英才扬帆计划(21YF1419400)
Refined Simulation of Near-Surface Wind Field of Atmospheric Boundary Layer Based on WRF-LES Model
Received date: 2022-10-20
Revised date: 2022-11-10
Accepted date: 2022-11-17
Online published: 2023-03-12
台风等极端气象灾害对工程结构安全造成严重威胁,研究近地面大气边界层精细化模拟对于土木工程具有重要应用价值.数值天气预报系统(WRF)中的大涡模拟(LES)模块具有参数方案多、精度高等优点,适用于近地面风场精细化模拟,但数值天气预报-大涡模拟(WRF-LES)精细化模拟效果与参数设置密切相关.寻求适用于精细化模拟近地面风场的参数设置,选用WRF-LES模式中的几种次网格模型和空间差分格式,采用较细密的网格分辨率,进行理想大气边界层模拟.对比平均风速剖面、湍流强度剖面和功率谱等风场特性,讨论关键参数对近地面风场模拟精度的影响,确定合适的参数设置.研究表明:对次网格模型,非线性回波散射和各向异性 (NBA1)模型可有效改善近地面风场模拟精度;对网格方案,在计算域底部不均匀加密垂直网格可更好地描述近地面风场空间分布特征,有效减小计算资源;对空间差分格式,偶数阶差分相较奇数阶差分格式可捕获更小尺度湍流结构.所提出的WRF-LES模式参数方案,可为精细化模拟近地面风场和台风边界层提供技术参考.
关键词: 次网格模型; 网格分辨率; 空间差分格式; 数值天气预报-大涡模拟
刘达琳, 陶韬, 曹勇, 周岱, 韩兆龙 . 基于WRF-LES模式的大气边界层近地风场精细化模拟研究[J]. 上海交通大学学报, 2024 , 58(2) : 220 -231 . DOI: 10.16183/j.cnki.jsjtu.2022.415
Extreme meteorological disasters such as typhoons pose a serious threat to the safety of engineering structures. Therefore, the refined simulation on the near-surface atmospheric boundary layer (ABL) is valuable for civil engineering. Large-eddy simulation (LES) implemented in the weather research and forecating (WRF) model has the advantages of multiple options of numerical schemes and high accuracy. It is generally suitable for the refined simulation of the near-surface wind field, although the performance of simulation results is closely related to the numerical methods. This paper assesses the impacts of vital parameters regarding subfilter-scale (SFS) stress models, mesh size, and spatial difference schemes within WRF-LES to simulate the ideal ABL in order to figure out appropriate numerical schemes for the refined simulation of the near-surface wind field. The wind field characteristics are addressed and analyzed such as mean wind speed profile, turbulence intensity profile, and power of spectrum. Comparisons of simulation results among different SFS stress models indicate that the nonlinear backscatter and anisotropy one (NBA1) SFS stress model can effectively improve the accuracy of simulation in the near-surface wind profiles. Investigations of mesh resolution effects indicate that the nonuniformly refined vertical grid near the surface agrees much better with the expected profiles and reduces the expenditure of computational resources. Furthermore, the results show that the even-order spatial difference schemes produce more small-scale turbulent structures than the odd-order difference schemes. The numerical methods of WRF-LES proposed can provide a technical reference for refined simulation of the near-surface wind field and typhoon boundary layer.
[1] | 曾鹏, 苏朝晖, 方伟华, 等. 基于高精度房屋类型数据的海口市台风次生洪涝灾害损失评估[J]. 灾害学, 2022, 9: 1-15. |
ZENG Peng, SU Zhaohui, FANG Weihua, et al. Typhoon flooding loss assessment in Haikou City based on high precision building type data[J]. Journal of Catastrophology, 2022, 9: 1-15. | |
[2] | 陈申鹏, 端义宏, 李青青. 基于高塔观测的登陆台风边界层风切变指数拟合[J]. 应用气象学报, 2022, 33(2): 155-166. |
CHEN Shenpeng, DUAN Yihong, LI Qingqing. Fitting of wind shear index in the boundary layer of landfalling typhoons based on high tower observation[J]. Journal of Applied Meteorological Science, 2022, 33(2): 155-166. | |
[3] | LI S W, LAIMA S J, LI H. Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 196-211. |
[4] | GUO A X, FANG Q H, BAI X D, et al. Hydrodynamic experiment of the wave force acting on the superstructures of coastal bridges[J]. Journal of Bride and Engineering, 2015, 20(12): 04015012. |
[5] | 缪国军, 张镭, 舒红. 利用WRF对兰州冬季大气边界层的数值模拟[J]. 气象科学, 2007, 98(2): 169-175. |
MIAO Guojun, ZHANG Lei, SHU Hong. The numerical simulation of the wind speed and temperature field in winter atmospheric boundary layer in Lanzhou by using WRF[J]. Journal of the Meteorological Sciences, 2007, 98(2): 169-175. | |
[6] | 余文林, 柯世堂. 基于WRF与CFD嵌套的台风下大型风力机流场作用与气动力分布[J]. 太阳能学报, 2020, 41(12): 260-269. |
YU Wenlin, KE Shitang. Flow field action and aerodynamic loads distribution for large-scale wind turbine under typhoon based on nesting of WRF and CFD[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 260-269. | |
[7] | YUAN R Y, JI W J, LUO K, et al. Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm[J]. Applied Energy, 2017, 206: 113-125. |
[8] | WICKER L J, SKAMAROCK W C. Time splitting methods for elastic models using forward time schemes[J]. Monthly Weather Review, 2002, 130(8): 2008-2097. |
[9] | JANJIC Z, JANJIC T, VASIC R. A class of conservative fourth-order advection schemes and impact on enhanced formal accuracy of extended-range forecasts[J]. Monthly Weather Review, 2011, 139(5): 1556-1568. |
[10] | YAMAGUCHI T, RANDALL D A, KHAIROUTDINOV M F. Cloud modeling tests of the ULTIMATE-MACHO scalar advection scheme[J]. Monthly Weather Review, 2011, 139(10): 3248-3264. |
[11] | 谢宾鹏, 韩月琪, 张立凤. 基于非线性密度流试验的平流差分方案[J]. 解放军理工大学学报(自然科学版), 2017, 18(2): 150-155. |
XIE Binpeng, HAN Yueqi, ZHANG Lifeng. Tests of advection differential scheme based on non-linear density current[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(2): 150-155. | |
[12] | DEARDOFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of Atmospheric Sciences, 1972, 29(1): 91-115. |
[13] | MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of Atmospheric Sciences, 1984, 41(13): 2052-2062. |
[14] | MOENG C H, DUDHIA J, KLEMP J, et al. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model[J]. Monthly Weather Review, 2007, 135(6): 2295-2311. |
[15] | LEITH C E. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer[J]. Physics of Fluids, 1990, 2(3): 297-299. |
[16] | MIROCHA J D, LUNDQUIST J K, KOSOVIC B. Implementation of a nonlinear sub-filter turbulence stress model for large-eddy simulation in the Advanced Research WRF model[J]. Monthly Weather Review, 2010, 138(11): 4212-4228. |
[17] | KIRKIL G, MIROCHA J, BOU-ZEID E, et al. Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF[J]. Monthly Weather Review, 2012, 140: 266-284. |
[18] | ZHENG Y, ALAPATY A, HERWEHE J A, et al. Improving high-resolution weather forecasts using the Weather Research and Forcasting (WRF) Model with an updated Kain-Fritsch scheme[J]. Monthly Weather Review, 2016, 144: 833-860. |
[19] | EROLANI G, GORLE C, GARCIA-SANCHEZ C, et al. RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer[J]. Computers & Fluids, 2015, 123: 54-71. |
[20] | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4.3: NCAR/TN-556+STR[S]. Colorado, USA: National Center for Atmospheric Research, 2021. |
[21] | MUNOZ-ESPARZA D, KOSOVIC B, MIROCHA J, et al. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models[J]. Boundary-Layer Meteorology, 2014, 153(3): 409-440. |
[22] | JIMENEZ P A, DUDHIA J, GONZALEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 2012, 140(3): 898-918. |
[23] | GIBBS J A, FEDOROVICH E. Comparison of convective boundary layer velocity spectra retrieved from Large-Eddy-Simulation and Weather Research and Forecasting model data[J]. Journal of Applied Meteorology and Climatology, 2014, 53(2): 377-394. |
[24] | 李建华. 环境科学与工程技术辞典-修订版[M]. 北京: 中国环境科学出版社, 2005. |
LI Jianhua. Revised dictionary of environmental science and engineering[M]. Beijing: China Environmental Press, 2005. | |
[25] | 刘鹏. 城市化影响水汽输送及云和降水的数值模拟研究[D]. 南京: 南京大学, 2016. |
LIU Peng. Numerical study of urbanization effects on water vapor transport cloud and precipitation[D]. Nanjing: Nanjing University, 2016. | |
[26] | MASON P J, THOMSON D J. Stochastic backscatter in large-eddy simulations of boundary layers[J]. Journal of Fluid Mechanics, 1992, 242: 51-78. |
[27] | KOSOVIC B. Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers[J]. Journal of Fluid Mechanics, 1997, 336: 151-182. |
[28] | BOER G J, SHEPHERD T G. Large-scale two-dimensional turbulence in the atmosphere[J]. Journal of the Atmospheric Science, 1983, 40(1): 164-184. |
[29] | SKAMAROCK W C. Evaluating mesoscale NWP models using kinetic energy spectra[J]. Monthly Weather Review, 2004, 132(12): 3019-3032. |
[30] | RAI R K, BERG L K, KOSOVIC B, et al. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain[J]. Boundary-Layer Meteorology, 2017, 163(1): 69-89. |
[31] | MUNOZ-ESPARZA D, LUNDQUIST J K, SAUER J A, et al. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(3): 1572-1594. |
[32] | HONNERT R, MASSON V, LAC C, et al. A theoretical analysis of mixing length for atmospheric models from micro to large scales[J]. Frontiers in Earth Science, 2021, 8: 582056. |
/
〈 |
|
〉 |