新型电力系统与综合能源

考虑补偿激励的电动汽车多区域优化调度策略

展开
  • 1.华北电力大学 电气与电子工程学院,北京 102206
    2.国网河北省电力有限公司信息通信分公司,石家庄 050000
孙 毅(1972-),教授,博士生导师,从事能源互联网信息通信、需求侧管理相关研究.
葛明洋,硕士生;E-mail:gmy8242@163.com.

收稿日期: 2022-09-05

  修回日期: 2022-11-07

  录用日期: 2022-12-13

  网络出版日期: 2023-03-07

基金资助

国家电网有限公司科技项目(5204XA22000D)

Multi-Region Optimal Scheduling Strategy for Electric Vehicles Considering Compensation Incentives

Expand
  • 1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
    2. Information and Telecommunication Branch, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050000, China

Received date: 2022-09-05

  Revised date: 2022-11-07

  Accepted date: 2022-12-13

  Online published: 2023-03-07

摘要

针对充电区域内分布式新能源(DRE)与电动汽车负荷供需不均的问题,提出一种考虑补偿激励的电动汽车多区域优化调度策略,引导电动汽车前往不同充电区域充电,以促进DRE就地消纳.首先,基于需求价格弹性及用户时间焦虑建立电动汽车用户需求电量模型.其次,基于剩余电量可达原则和空闲时间冗余原则将电动汽车划分为可响应和不可响应集群,利用基于后悔理论的充电区域决策模型对可响应集群按区域作进一步划分.最后,建立电动汽车多区域优化调度模型,从最大化充电服务商经济效益及DRE消纳程度两个方面对充电价格进行优化.通过仿真验证证明所提优化策略能够充分考虑时间焦虑和价格弹性对电动汽车用户的影响,充分挖掘用户的响应潜力,在降低DRE消纳偏差量和提高充电服务商经济效益方面具有明显效果.

本文引用格式

孙毅, 葛明洋, 王献春, 鲍荟谕, 杨泓玥, 姚陶 . 考虑补偿激励的电动汽车多区域优化调度策略[J]. 上海交通大学学报, 2024 , 58(5) : 636 -646 . DOI: 10.16183/j.cnki.jsjtu.2022.348

Abstract

Aimed at the problem of uneven supply and distributed renewable energy (DRE) in charging regions and electric vehicle (EV) loads, a multi-region optimal scheduling strategy for EVs considering compensation incentives is proposed to guide EVs to choose different charging regions, so as to promote local consumption of distributed energy. First, an EV charging response model is established based on the price elasticity of demand and users’ time anxiety. Then, based on the principle of remaining power availability and idle time redundancy, EVs are divided into responsive cluster and non-responsive cluster. A charging area decision model based on regret theory is used to further divide the responsive cluster by region. Finally, a multi-region optimal scheduling model for EVs is established, and the charging price is optimized in terms of maximizing the economic benefits of charging service providers and the consumption of DRE. Simulation cases show that the proposed optimization strategy can fully consider the impact of time anxiety and price elasticity on EV users, fully tap the users’ response potential, and has obvious effects in reducing the deviation of distributed new energy consumption and improving the economic benefits of charging service providers.

参考文献

[1] 陈文溆乐, 向月, 彭光博, 等. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576.
  CHEN Wenxule, XIANG Yue, PENG Guangbo, et al. System dynamic modeling and analysis of power system supply side morphological development with dual carbon targets[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1567-1576.
[2] MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
[3] 陈皓勇, 谭碧飞, 伍亮, 等. 分层集群的新型电力系统运行与控制[J]. 中国电机工程学报, 2023, 43(2): 581-595.
  CHEN Haoyong, TAN Bifei, WU Liang, et al. Operation and control of the new power systems based on hierarchical clusters[J]. Proceedings of the CSEE, 2023, 43(2): 581-595.
[4] 任峰, 向月. 辅助负荷削峰的电动出租车V2G协同策略与效益分析[J]. 电力自动化设备, 2022, 42(2): 63-69.
  REN Feng, XIANG Yue. V2G coordinated strategy and benefit analysis of electric taxis to assist peak load shifting[J]. Electric Power Automation Equipment, 2022, 42(2): 63-69.
[5] 刘岩, 张亚超, 朱蜀, 等. 计及EV负荷-风电异质场景集的交直流混合配电网多目标分布式协同优化[J]. 电力自动化设备, 2022, 42(10): 218-226.
  LIU Yan, ZHANG Yachao, ZHU Shu, et al. Multi-objective distributed cooperative optimization of hybrid AC/DC distribution network considering EV load-wind power heterogeneous scenario sets[J]. Electric Power Automation Equipment, 2022, 42(10): 218-226.
[6] FOULADI E, BAGHAEE H R, BAGHERI M, et al. Power management of microgrids including PHEVs based on maximum employment of renewable energy resources[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5299-5307.
[7] 陈梓瑜, 朱继忠, 刘云, 等. 基于信息物理社会融合的新能源消纳策略[J]. 电力系统自动化, 2022, 46(9): 127-136.
  CHEN Ziyu, ZHU Jizhong, LIU Yun, et al. Renewable energy accommodation strategy based on cyber-physical-social integration[J]. Automation of Electric Power Systems, 2022, 46(9): 127-136.
[8] 傅质馨, 朱韦翰, 朱俊澎, 等. 动态路-电耦合网络下电动出租车快速充电引导及其定价策略[J]. 电力自动化设备, 2022, 42(4): 9-17.
  FU Zhixin, ZHU Weihan, ZHU Junpeng, et al. Fast charging guidance and pricing strategy for electric taxis based on dynamic traffic-grid coupling network[J]. Electric Power Automation Equipment, 2022, 42(4): 9-17.
[9] 葛显龙, 李婷, 王博, 等. 考虑负效应最小化的电动汽车补能诱导研究[J]. 交通运输系统工程与信息, 2022, 22(3): 74-83.
  GE Xianlong, LI Ting, WANG Bo, et al. Electric vehicle charging induction with minimization of negative effects[J]. Journal of Transportation Systems Engineering & Information Technology, 2022, 22(3): 74-83.
[10] BITHER S W, HOWARD J A, SHETH J N. The theory of buyer behavior[J]. Journal of Marketing, 1971, 35(1): 102.
[11] 徐广达, 张利, 梁军, 等. 基于设备用电特征的居民电力需求价格弹性评估[J]. 电力系统自动化, 2020, 44(13): 48-55.
  XU Guangda, ZHANG Li, LIANG Jun, et al. Estimation of price elasticity for residential electricity demand based on electricity consumption features of appliances[J]. Automation of Electric Power Systems, 2020, 44(13): 48-55.
[12] 郭伟嘉, 刘敦楠, 王文, 等. 基于智能合约的电动汽车充电服务费自适应调整机制[J]. 电力自动化设备, 2022, 42(10): 13-20.
  GUO Weijia, LIU Dunnan, WANG Wen, et al. Adaptive adjustment mechanism of electric vehicle charging service fee based on smart contract[J]. Electric Power Automation Equipment, 2022, 42(10): 13-20.
[13] 陈中, 刘艺, 周涛, 等. 考虑移动特性的电动汽车最优分时充电定价策略[J]. 电力自动化设备, 2020, 40(4): 96-102.
  CHEN Zhong, LIU Yi, ZHOU Tao, et al. Optimal time-of-use charging pricing strategy of EVs considering mobile characteristics[J]. Electric Power Automation Equipment, 2020, 40(4): 96-102.
[14] 石文超, 吕林, 高红均, 等. 考虑需求响应和电动汽车参与的主动配电网经济调度[J]. 电力系统自动化, 2020, 44(11): 41-51.
  SHI Wenchao, LV Lin, GAO Hongjun, et al. Economic dispatch of active distribution network with participation of demand response and electric vehicle[J]. Automation of Electric Power Systems, 2020, 44(11): 41-51.
[15] 刘向军, 牟明亮, 黄绍模, 等. 考虑充电功率衰减的电动汽车两阶段优化调度策略[J]. 电网技术, 2021, 45(7): 2656-2666.
  LIU Xiangjun, MU Mingliang, HUANG Shaomo, et al. Two-stage optimal scheduling strategy of electric vehicle considering charging power decay[J]. Power System Technology, 2021, 45(7): 2656-2666.
[16] 李梦, 黄海军. 基于后悔理论的出行路径选择行为研究[J]. 管理科学学报, 2017, 20(11): 1-9.
  LI Meng, HUANG Haijun. Modeling route choice behavior based on regret theory[J]. Journal of Management Sciences in China, 2017, 20(11): 1-9.
[17] 张美霞, 孙铨杰, 杨秀. 考虑多源信息实时交互和用户后悔心理的电动汽车充电负荷预测[J]. 电网技术, 2022, 46(2): 632-645.
  ZHANG Meixia, SUN Quanjie, YANG Xiu. Electric vehicle charging load prediction considering multi-source information real-time interaction and user regret psychology[J]. Power System Technology, 2022, 46(2): 632-645.
[18] 许汉平, 李姚旺, 苗世洪, 等. 考虑可再生能源消纳效益的电力系统“源-荷-储”协调互动优化调度策略[J]. 电力系统保护与控制, 2017, 45(17): 18-25.
  XU Hanping, LI Yaowang, MIAO Shihong, et al. Optimization dispatch strategy considering renewable energy consumptive benefits based on “source-load-energy storage” coordination in power system[J]. Power System Protection & Control, 2017, 45(17): 18-25.
[19] 麻秀范, 李颖, 王皓, 等. 基于电动汽车出行随机模拟的充电桩需求研究[J]. 电工技术学报, 2017, 32 (Sup.2): 190-202.
  MA Xiufan, LI Ying, WANG Hao, et al. Research on demand of charging piles based on stochastic simulation of EV trip chain[J]. Transactions of China Electrotechnical Society, 2017, 32 (Sup.2): 190-202.
[20] PARK S W, CHO K S, HOEFTER G, et al. Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system[J]. Applied Energy, 2022, 305: 117680.
文章导航

/