新型电力系统与综合能源

计及短期运行灵活性的城市能源系统扩展规划

展开
  • 1.河海大学 能源与电气学院,南京 211100
    2.国网浙江省电力有限公司 电力科学研究院,杭州 310014
卫志农(1962-),教授,博士生导师,从事综合能源系统研究.
陈 胜,教授;E-mail:chensheng2019@hhu.edu.cn.

收稿日期: 2022-07-05

  修回日期: 2022-09-13

  录用日期: 2022-09-19

  网络出版日期: 2023-03-03

基金资助

国家自然科学基金资助项目(52007051);中国科协青年人才托举工程项目(2021QNRC001);中央高校基本科研业务费项目(B220202006)

Urban Energy System Expansion Planning Considering Short-Term Operational Flexibility

Expand
  • 1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
    2. Electric Power Research Institute, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China

Received date: 2022-07-05

  Revised date: 2022-09-13

  Accepted date: 2022-09-19

  Online published: 2023-03-03

摘要

城市是能源消费与碳排放的主力.在“双碳”背景下,促进城市能源系统低碳转型已成为当前城市规划的首要任务.然而,在新能源出力占比增加的同时,系统的灵活性需求也随之增加.为此,提出一种考虑长短期不确定性的城市能源系统扩展规划模型,涵盖电、气、热多种能源形态,在规划的层面计及实时运行阶段的不确定性及运行灵活性,并采用随机优化方法进行求解.模型考虑新能源机组和能源枢纽中各类能源转换设备的容量扩建,通过施加碳排放配额约束来确保达成碳减排目标.算例结果表明,该模型能有效提高城市能源系统的经济性和新能源消纳率,并且可以满足不同的碳减排需求.

本文引用格式

卫志农, 杨立, 陈胜, 马骏超, 彭琰, 费有蝶 . 计及短期运行灵活性的城市能源系统扩展规划[J]. 上海交通大学学报, 2024 , 58(5) : 659 -668 . DOI: 10.16183/j.cnki.jsjtu.2022.259

Abstract

Urban cities are the main force of energy consumption and carbon emission. In the context of “dual carbon”, promoting low-carbon transformation of urban energy systems has become the top priority of urban planning. However, while the share of renewable energy output increases, the requirement for system flexibility also increases. To this end, an urban energy system expansion planning model that accounts for both long-term and short-term uncertainties is proposed. Multiple forms of energy, including electricity, gas, and heat are encompassed in this model. At the planning level, uncertainty and operational flexibility during the real-time operation stage are estimated, and a stochastic optimization approach is employed for solving. The capacity expansion of renewable energy generators and energy hubs (EHs) is considered by the model, with the imposition of carbon emission quota constraints to ensure the attainment of carbon emission reduction targets. The results show that the model can effectively improve the economy of urban energy system and the rate of consumption of renewable energy, and can meet different carbon-emission reduction requirements.

参考文献

[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[2] 新华网. 习近平在第七十五届联合国大会一般性辩论上的讲话(全文)[EB/OL]. (2020-09-23)[2022-06-30]. https://world.huanqiu.com/article/3zzx6TNlCFN.
  Xinhua Net. Xi Jinping’s speech at the 75th session of the United Nations General Assembly general debate (full text)[EB/OL]. (2020-09-23) [2022-06-30]. https://world.huanqiu.com/article/3zzx6TNlCFN.
[3] 中国政府网. 习近平组织召开中央财经委员会第九次会议[EB/OL]. (2022-02-27)[2022-06-30]. https://www.mot.gov.cn/guowuyuanxinxi/202103/t20210316_3530718.html.
  Chinese Government Website. Xi Jinping organizes the ninth meeting of the central committee of financial and economic affairs[EB/OL]. (2022-02-27) [2022-06-30]. https://www.mot.gov.cn/guowuyuanxinxi/202103/t20210316_3530718.html.
[4] 张哲, 任怡萌, 董会娟. 城市碳排放达峰和低碳发展研究: 以上海市为例[J]. 环境工程, 2020, 38(11): 12-18.
  ZHANG Zhe, REN Yimeng, DONG Huijuan. Research on carbon emissions peaking and low-carbon development of cities: A case of Shanghai[J]. Environmental Engineering, 2020, 38(11): 12-18.
[5] 杜尔顺, 孙彦龙, 张宁, 等. 适应低碳电源发展的低碳电网规划模型[J]. 电网技术, 2015, 39(10): 2725-2730.
  DU Ershun, SUN Yanlong, ZHANG Ning, et al. Transmission expansion planning model facilitating low-carbon power sources’ development[J]. Power System Technology, 2015, 39(10): 2725-2730.
[6] 李芸漫, 高红均, 李海波, 等. 考虑综合能源站柔性调控作用的城市配电网多阶段规划方法[J]. 电力自动化设备, 2022, 42(1): 45-54.
  LI Yunman, GAO Hongjun, LI Haibo, et al. Multi-stage planning method for urban distribution network considering flexible regulation of integrated energy station[J]. Electric Power Automation Equipment, 2022, 42(1): 45-54.
[7] 周贤正, 郭创新, 董树锋, 等. 考虑配电网重构的城市多能源配电/气/热网扩展规划[J]. 电力系统自动化, 2019, 43(7): 23-33.
  ZHOU Xianzheng, GUO Chuangxin, DONG Shufeng, et al. Expansion planning of urban multi-energy electricity-gas-heating distribution network incorporating electrical reconfiguration[J]. Automation of Electric Power Systems, 2019, 43(7): 23-33.
[8] 李珂, 邵成成, 王雅楠, 等. 考虑电-气-交通耦合的城市综合能源系统规划[J]. 中国电机工程学报, 2023, 43(6): 2263-2273.
  LI Ke, SHAO Chengcheng, WANG Yanan, et al. Optimal planning of urban integrated energy systems considering electricity-gas-transportation interactions[J]. Proceedings of the CSEE, 2023, 43(6): 2263-2273.
[9] LEI Y, WANG D, JIA H J, et al. Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties[J]. Applied Energy, 2021, 300: 117224.
[10] 左逢源, 张玉琼, 赵强, 等. 计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化[J]. 中国电机工程学报, 2022, 42(22): 8205-8214.
  ZUO Fengyuan, ZHANG Yuqiong, ZHAO Qiang, et al. Two-stage stochastic optimization for operation scheduling and capacity allocation of integrated energy production unit considering supply and demand uncertainty[J]. Proceedings of the CSEE, 2022, 42(22): 8205-8214.
[11] 郑伟民, 王蕾, 孙可, 等. 考虑多能流广义储能作用的配电网协调规划[J]. 电力自动化设备, 2021, 41(7): 22-30.
  ZHENG Weimin, WANG Lei, SUN Ke, et al. Coordinated planning of distribution network considering generalized energy storage effect of multi-energy flow[J]. Electric Power Automation Equipment, 2021, 41(7): 22-30.
[12] 王李龑, 许强, 黄开艺, 等. 计及新能源及负荷不确定性的多能微网系统两阶段随机规划方法[J]. 电力建设, 2020, 41(4): 100-108.
  WANG Liyan, XU Qiang, HUANG Kaiyi, et al. A two-stage stochastic programming method for multi-energy microgrid system considering the uncertainty of new energy and load[J]. Electric Power Construction, 2020, 41(4): 100-108.
[13] HUANG W J, ZHANG N, YANG J W, et al. Optimal configuration planning of multi-energy systems considering distributed renewable energy[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1452-1464.
[14] OLSEN D J, ZHANG N, KANG C Q, et al. Planning low-carbon campus energy hubs[J]. IEEE Transactions on Power Systems, 2019, 34(3): 1895-1907.
[15] 赵景茜, 米翰宁, 程昊文, 等. 考虑岸电负荷弹性的港区综合能源系统规划模型与方法[J]. 上海交通大学学报, 2021, 55(12): 1577-1585.
  ZHAO Jingqian, MI Hanning, CHENG Haowen, et al. A planning model and method for an integrated port energy system considering shore power load flexibility[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1577-1585.
[16] 朱西平, 罗健, 李姿霖, 等. 考虑灵活爬坡产品的能源枢纽低碳经济调度[J]. 电力自动化设备, 2023, 43(1): 9-15.
  ZHU Xiping, LUO Jian, LI Zilin, et al. Low-carbon economic dispatching of energy hub considering flexible ramping product[J]. Electric Power Automation Equipment, 2023, 43(1): 9-15.
[17] 朱晓荣, 山雨琦. 考虑灵活性的储能容量多阶段分布鲁棒规划[J]. 电力自动化设备, 2023, 43(6): 152-159.
  ZHU Xiaorong, SHAN Yuqi. Multi-stage distributionally robust planning of energy storage capacity considering flexibility[J]. Electric Power Automation Equipment, 2023, 43(6): 152-159.
[18] 曾博, 徐富强, 刘裕, 等. 考虑可再生能源与需求响应协同增效的能量枢纽多目标区间优化规划方法[J]. 中国电机工程学报, 2021, 41(21): 7212-7224.
  ZENG Bo, XU Fuqiang, LIU Yu, et al. Multi-objective interval optimization planning method for energy hub considering synergy between renewable energy and demand response[J]. Proceedings of the CSEE, 2021, 41(21): 7212-7224.
[19] 吕祥梅, 刘天琪, 刘绚, 等. 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021, 55(12): 1586-1597.
  Lü Xiangmei, LIU Tianqi, LIU Xuan, et al. Low-carbon economic dispatch of multi-energy park considering high proportion of renewable energy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597.
[20] FAVRE-PERROD P. A vision of future energy networks[C]// 2005 IEEE Power Engineering Society Inaugural Conference and Exposition in Africa. Durban, Africa: IEEE, 2005: 13-17.
[21] SOROUDI A. Power system optimization modeling in GAMS[M]. Cham: Springer International Publishing, 2017.
[22] GAN L W, LI N, TOPCU U, et al. Exact convex relaxation of optimal power flow in radial networks[J]. IEEE Transactions on Automatic Control, 2015, 60(1): 72-87.
[23] 程恩林, 卫志农, 嵇文路, 等. 计及多能源集线器的电热综合能源系统分布式优化[J]. 电力自动化设备, 2022, 42(1): 37-44.
  CHENG Enlin, WEI Zhinong, JI Wenlu, et al. Distributed optimization of integrated electricity-heat energy system considering multiple energy hubs[J]. Electric Power Automation Equipment, 2022, 42(1): 37-44.
[24] LA SCALA M. From smart grids to smart cities: New challenges in optimizing energy grids[M]. Hoboken: John Wiley & Sons, 2016.
[25] CONEJO A J, BARINGO L, KAZEMPOUR S J, et al. Generation and transmission expansion planning[M]// Investment in electricity generation and transmission. Cham: Springer, 2016: 115-167.
[26] OREE V, SAYED HASSEN S Z, FLEMING P J. Generation expansion planning optimisation with renewable energy integration: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 790-803.
[27] ZHANG X, CONEJO A J. Robust transmission expansion planning representing long-and short-term uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1329-1338.
[28] MA T F, WU J Y, HAO L L, et al. The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141.
[29] 李鹏, 王瑞, 冀浩然, 等. 低碳化智能配电网规划研究与展望[J]. 电力系统自动化, 2021, 45(24): 10-21.
  LI Peng, WANG Rui, JI Haoran, et al. Research and prospect of planning for low-carbon smart distribution network[J]. Automation of Electric Power Systems, 2021, 45(24): 10-21.
[30] ROSENTHAL R E. GAMS: A user’s guide[M]. Washington: GAMS Development Corporation, 2008.
[31] CHEN S, WEI Z N, SUN G Q, et al. Adaptive robust day-ahead dispatch for urban energy systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1379-1390.
[32] 国家能源局. 国家能源局发布2021年全国电力工业统计数据[DB/OL]. (2022-01-26)[2022-02-27]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.
  National Energy Administration. National Energy Administration releases 2021 national electricity industry statistics[DB/OL]. (2022-01-26) [2022-02-27]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.
[33] PINSON P. Wind energy: Forecasting challenges for its operational management[J]. Statistical Science, 2013, 28(4): 564-585.
[34] CAO Y, WEI W, WANG J H, et al. Capacity planning of energy hub in multi-carrier energy networks: A data-driven robust stochastic programming approach[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 3-14.
文章导航

/