船舶海洋与建筑工程

冲刷防护作业中流态固化土对海洋桩基作用力的数值研究

展开
  • 1.上海交通大学 海洋工程国家重点实验室,上海 200240
    2.上海公路桥梁(集团)有限公司,上海 200433
李濡宇(1996-),博士生,从事海洋土力学与桩基工程研究.

收稿日期: 2022-07-15

  修回日期: 2022-11-04

  录用日期: 2023-01-19

  网络出版日期: 2023-03-01

基金资助

国家自然科学基金项目(51679134);上海市科学技术委员会项目(22DZ1208903);上海市科学技术委员会项目(20DZ2251900)

Numerical Analysis of Force of Fluidized Solidified Slurry in Pumping for Scour Repair on Offshore Pile Foundation

Expand
  • 1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Road and Bridge Group Co., Ltd., Shanghai 200433, China

Received date: 2022-07-15

  Revised date: 2022-11-04

  Accepted date: 2023-01-19

  Online published: 2023-03-01

摘要

采用固化土进行冲刷防护是一种全新的防冲刷措施,目前正逐步被应用于海上风力发电单桩基础及跨海大桥桩基础的冲刷修复中.流态固化土在泵送至海洋桩基周围冲刷坑中的过程中,会对既有承载力弱化的桩基产生不利影响,然而目前仍缺乏对该问题的认识.采用计算流体动力学方法,模拟了单桩基础周围冲刷坑中流态固化土泵送过程,关注流态固化土对桩基础的作用,分析了泵速、海流流速、固化土类型等因素对桩基础作用力的影响,其中海流流速影响最大,同时提出了流态固化土对桩基作用力简化分析思路,并给出了作用力经验公式.研究结果可作为固化土防冲刷工程技术控制的依据.

本文引用格式

李濡宇, 毋晓妮, 陈锦剑, 蒋海里, 王会丽 . 冲刷防护作业中流态固化土对海洋桩基作用力的数值研究[J]. 上海交通大学学报, 2023 , 57(12) : 1609 -1618 . DOI: 10.16183/j.cnki.jsjtu.2022.280

Abstract

As a novel scour protection measure, the fluidized solidified slurry is pumped into the developed scour holes around the pile foundation for scour repair as the fluidized material solidifies gradually. In the process of pumping operation, the fluidized solidified slurry will have a negative effect on the pile. However, there is still a lack of comprehensive study on the force acting on the pile in this process. The CFD model is adopted to simulate the flow and diffusion of the solidified slurry pumped into the scour pit around the monopile. The effects of pumping velocity, current velocity, and material property of solidified slurry on the force acting on the pile are systematically investigated, of which, current velocity is the most sensitive factor. A simplified analysis method for force of fluidized solidified slurry acting on the monopile is proposed, providing basis for the design and construction of the pumping operation.

参考文献

[1] ZHANG Q, ZHOU X L, WANG J H. Numerical investigation of local scour around three adjacent piles with different arrangements under current[J]. Ocean Engineering, 2017, 142: 625-638.
[2] 张琪. 海洋桩基及管线周围海床的局部冲刷问题研究[D]. 上海: 上海交通大学, 2019.
[2] ZHANG Qi. Study on local scour of seabed around marine pile foundation and pipeline[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[3] 和庆冬, 戚建功. 一种新技术在海上风机基础冲刷防护的应用研究[J]. 南方能源建设, 2020, 7(2): 112-121.
[3] HE Qingdong, QI Jiangong. A new technology research for scour protection of offshore wind turbine foundation[J]. Southern Energy Construction, 2020, 7(2): 112-121.
[4] 袁建中. 固化土在海上风电单桩基础冲刷修复中的应用[J]. 中国海洋平台, 2021, 36(4): 46-50.
[4] YUAN Jianzhong. Application of stabilized soil in scour repair of offshore wind power single pile foundation[J]. China Offshore Platform, 2021, 36(4): 46-50.
[5] HU R, LU Y, LENG H, et al. A novel countermeasure for preventing scour around monopile foundations using Ionic Soil Stabilizer solidified slurry[J]. Applied Ocean Research, 2022, 121: 103121.
[6] XU G Z, FENG Z Y, YIN J, et al. Effect of salinity on rheological behavior of cement-treated dredged clays as fills[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 04020269.
[7] 王友彪. 泥石流对桥墩冲击力研究[D]. 成都: 西南交通大学, 2019.
[7] WANG Youbiao. Debris flow impact forces on bridge piers[D]. Chengdu: Southwest Jiaotong University, 2019.
[8] ZAKERI A, H?EG K, NADIM F. Submarine debris flow impact on pipelines—Part I: Experimental investigation[J]. Coastal Engineering, 2008, 55(12): 1209-1218.
[9] ZAKERI A, H?EG K, NADIM F. Submarine debris flow impact on pipelines—Part II: Numerical analysis[J]. Coastal Engineering, 2009, 56(1): 1-10.
[10] 冯斌, 孙宏磊, 蔡袁强, 等. 海底滑坡对海洋单桩冲击力试验研究[J]. 海洋工程, 2019, 37(6): 114-121.
[10] FENG Bin, SUN Honglei, CAI Yuanqiang, et al. Experimental study of submarine landslide impact on offshore wind power piles[J]. The Ocean Engineering, 2019, 37(6): 114-121.
[11] LI R Y, CHEN J J, LIAO C C. Numerical study on interaction between submarine landslides and a monopile using CFD techniques[J]. Journal of Marine Science and Engineering, 2021, 9(7): 736.
[12] RANDOLPH M F, WHITE D J. Interaction forces between pipelines and submarine slides—A geotechnical viewpoint[J]. Ocean Engineering, 2012, 48: 32-37.
[13] 王立忠, 缪成章. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 2008, 30(7): 982-987.
[13] WANG Lizhong, MIAO Chengzhang. Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 982-987.
[14] LIN C, HAN J, BENNETT C, et al. Analysis of laterally loaded piles in sand considering scour hole dimensions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014024.
[15] YIN J, HU M M, XU G Z, et al. Effect of salinity on rheological and strength properties of cement-stabilized clay minerals[J]. Marine Georesources & Geotechnology, 2020, 38(5): 611-620.
[16] RICHARDSON E V, DAVIS S R. Evaluating scour at bridges[R]. USA: Federal Highway Administration Office of Bridge Technology, 2001.
[17] ROULUND A, SUMER B M, FREDS?E J, et al. Numerical and experimental investigation of flow and scour around a circular pile[J]. Journal of Fluid Mechanics, 2005, 534: 351-401.
[18] 李宏伟, 王立忠, 国振, 等. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 2015, 33(6): 10-19.
[18] LI Hongwei, WANG Lizhong, GUO Zheng, et al. Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. The Ocean Engineering, 2015, 33(6): 10-19.
[19] 朱瑜星, 卞怡, 闵凡路, 等. 地铁盾构渣土改良为流动化土进行应用试验研究[J]. 土木工程学报, 2020, 53(Sup.1): 245-251.
[19] ZHU Yuxing, BIAN Yi, MIN Fanlu, et al. Improvement of metro shield muck to controlled low-strength material[J]. China Civil Engineering Journal, 2020, 53(Sup.1): 245-251.
[20] 戴国亮, 龚维明, 沈景宁, 等. 东海大桥海上风电场基础波浪理论分析[J]. 岩土工程学报, 2013, 35(Sup.1): 456-461.
[20] DAI Guoliang, GONG Weiming, SHEN Jingning, et al. Wave theory analysis of foundation of offshore wind farm near East Sea Bridge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup.1): 456-461.
[21] 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学化工出版社, 2008.
[21] LI Yunyan, HU Chuanrong. Experimental design and data processing[M]. Beijing: Chemistry and Chemical Engineering Press, 2008.
[22] 中交第一航务工程勘查设计院有限公司. 海港水文规范: JTS 145—2—2013[S]. 北京: 人民交通出版社, 2013.
[22] CCCC First Harbor Consultants Co., Ltd.. Code of ocean harbor hydrology: JTS 145—2—2013[S]. Beijing: The People’s Communication Press, 2013.
[23] 中交第一航务工程勘查设计院有限公司,中交第二航务工程勘查设计院有限公司. 港口工程荷载规范: JTS 144—1—2010[S]. 北京: 人民交通出版社, 2010.
[23] CCCC First Harbor Consultants Co., Ltd., CCCC Second Harbor Consultants Co., Ltd.. Load code for harbour engineering: JTS 144—1—2010[S]. Beijing: The People’s Communication Press, 2010.
[24] WHITE F M, CORFIELD I. Viscous fluid flow[M]. New York, USA: McGraw-Hill, 2006.
文章导航

/