碳纤维复合材料/钢的胶铆连接失效机理和选材方法
收稿日期: 2021-09-10
修回日期: 2021-10-29
录用日期: 2021-11-17
网络出版日期: 2023-03-01
基金资助
上海市汽车工业科技发展基金项目(1749)
Failure Mechanism and Material Selection Method of CFRP/Steel Rivet-Bonding Joints
Received date: 2021-09-10
Revised date: 2021-10-29
Accepted date: 2021-11-17
Online published: 2023-03-01
为了揭示碳纤维复合材料(CFRP)与钢板连接设计中,母材厚度和强度对接头失效的影响规律,对CFRP层合板与DC05、HC260Y、DP590、DP780、DP1180、PHS1500钢板组成的胶接、铆接和胶铆混合接头进行单向和正向拉伸试验,分析各接头连接强度和失效模式,提出CFRP/钢接头母材厚度比和强度比的推荐范围.结果表明:CFRP/钢接头失效模式由较弱一侧母材强度和刚度决定,在连接设计中,应尽可能使两母材的强度和刚度相近;CFRP零件与相邻钢件厚度比的推荐范围为1.37~1.91,母材极限承载比的推荐范围为0.9~1.52.
关键词: 碳纤维复合材料层合板/钢板; 连接强度; 失效机理; 选材
余海燕, 吴航宇 . 碳纤维复合材料/钢的胶铆连接失效机理和选材方法[J]. 上海交通大学学报, 2023 , 57(2) : 230 -240 . DOI: 10.16183/j.cnki.jsjtu.2021.344
To reveal the influence of material selection on joint properties in the joint design between carbon fiber reinforced polymer (CFRP) and steels, experiments of uniaxial tension and normal tension were performed on the bonded, riveted, and rivet-bonding joints, which were made of CFRP laminates and DC05, HC260Y, DP590, DP780, DP1180, and PHS1500 steel sheets. The failure modes and tensile strength of these joints were analyzed. The thickness ratio and bearing coefficient ratio of the CFRP parts and adjacent steel parts were summarized. The results show that the failure mode of the CFRP/steel joint depends on the mechanical properties of the material of the weaker side. During joint design, the strength and stiffness of the CFRP parts and adjacent parts should be as similar as possible. The thickness ratio of the CFRP parts and adjacent steel parts is recommended to be between 1.37 and 1.91, and the load bearing coefficient ratio is recommended to be between 0.9 and 1.52.
[1] | KOWATZ J, TEUTENBERG D, MESCHUT G. Experimental failure analysis of adhesively bonded steel/CFRP joints under quasi-static and cyclic tensile-shear and peel loading[J]. International Journal of Adhesion and Adhesives, 2021, 107: 102851. |
[2] | ZHENG G, HE Z K, WANG K, et al. On failure mechanisms in CFRP/Al adhesive joints after hygrothermal aging degradation following by mechanical tests[J]. Thin-Walled Structures, 2021, 158: 107184. |
[3] | XU Q H, LI F, MU W L, et al. Effect of hygrothermal and alternating load coupled aging on CFRP/Al bonded joints[J]. International Journal of Adhesion and Adhesives, 2021, 109: 102912. |
[4] | 李永兵, 马运五, 楼铭, 等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56(6): 125-146. |
[4] | LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering, 2020, 56(6): 125-146. |
[5] | 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1-23. |
[5] | LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1-23. |
[6] | 宫占峰. 复合材料结构连接技术研究[J]. 纤维复合材料, 2015, 32(2): 26-29. |
[6] | GONG Zhanfeng. Research on composite structure join technology[J]. Fiber Composites, 2015, 32(2): 26-29. |
[7] | LOPES J, STEFANIAK D, REIS L, et al. Single lap shear stress in hybrid CFRP/Steel composites[J]. Procedia Structural Integrity, 2016, 1: 58-65. |
[8] | SEONG M S, KIM T H, NGUYEN K H, et al. A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum[J]. Composite Structures, 2008, 86(1/2/3): 135-145. |
[9] | ARENAS J M, ALíA C, NARBóN J J, et al. Considerations for the industrial application of structural adhesive joints in the aluminium-composite material bonding[J]. Composites Part B: Engineering, 2013, 44(1): 417-423. |
[10] | RUSSIAN O, KHAN S, BELARBI A, et al. Effect of surface preparation technique on bond behavior of CFRP-steel double-lap joints: Experimental and numerical studies[J]. Composite Structures, 2021, 255: 113048. |
[11] | SILVA M A G, BISCAIA H, RIBEIRO P. On factors affecting CFRP-steel bonded joints[J]. Construction and Building Materials, 2019, 226: 360-375. |
[12] | RIBEIRO T E A, CAMPILHO R D S G, DA SILVA L F M, et al. Damage analysis of composite-aluminium adhesively-bonded single-lap joints[J]. Composite Structures, 2016, 136: 25-33. |
[13] | 郭帅. CFRP与DC04钢胶接接头力学性能研究与失效行为分析[D]. 长沙: 湖南大学, 2017. |
[13] | GUO Shuai. Study of the mechanical performance and analysis of the failure behavior for adhesivly bonded joints between CFRP and steel DC04[D]. Changsha: Hunan University, 2017. |
[14] | 檀甜甜, 杨鹏, 曹娜, 等. 碳纤维复合材料结构件在不同铆接方式下的连接强度对比分析[J]. 航空精密制造技术, 2021, 57(3): 14-18. |
[14] | TAN Tiantian, YANG Peng, CAO Na, et al. Comparative analysis of joint strength of carbon fiber reinforced plastic structure with different connection modes[J]. Aviation Precision Manufacturing Techno-logy, 2021, 57(3): 14-18. |
[15] | KOPANITSA N O, USTINOV A M, TRISHKINA L I, et al. Digital image correlation study of the elastoplastic deformation of the steel/CFRP adhesive joint[J]. Russian Metallurgy (Metally), 2019, 2019(4): 466-470. |
[16] | LI Y, LI C X, HE J, et al. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint[J]. Construction and Building Materials, 2020, 244: 118400. |
[17] | DOROUDI Y, FERNANDO D, HOSSEINI A, et al. Behavior of cracked steel plates strengthened with adhesively bonded CFRP laminates under fatigue Loading: Experimental and analytical study[J]. Composite Structures, 2021, 266: 113816. |
[18] | 胡宝刚. 复合材料结构件的机械连接工艺[J]. 导弹与航天运载技术, 1995, 218(6): 46-52. |
[18] | HU Baogang. Mechanical jointing technology of composite material structural components[J]. Missiles and Space Vehicles, 1995, 218(6): 46-52. |
[19] | FRANCO G, FRATINI L, PASTA A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks[J]. International Journal of Adhesion and Adhesives, 2013, 41: 24-32. |
[20] | MARANNANO G, ZUCCARELLO B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints[J]. Composites Part B: Engineering, 2015, 71: 28-39. |
[21] | 徐福泉, 高大伟. 复合材料结构装配过程中的制孔和连接[J]. 航空制造技术, 2010, 53(17): 72-74. |
[21] | XU Fuquan, GAO Dawei. Drilling and linking during composites structure assembly process[J]. Aeronautical Manufacturing Technology, 2010, 53(17): 72-74. |
[22] | JUVINALL R C, SAUNDERS H. Fundamentals of machine component design[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105(4): 607. |
[23] | WILEMAN J, CHOUDHURY M, GREEN I. Computation of member stiffness in bolted connections[J]. Journal of Mechanical Design, 1991, 113(4): 432-437. |
[24] | 张杰, 何晓聪, 丁文有. 碳纤维板材与轻合金板材自冲铆接头性能研究[J]. 兵器材料科学与工程, 2018, 41(3): 48-51. |
[24] | ZHANG Jie, HE Xiaocong, DING Wenyou. Mechanical properties of self-piercing riveted joint of carbon fiber composites and light alloy sheet[J]. Ordnance Material Science and Engineering, 2018, 41(3): 48-51. |
[25] | 王树鑫. 基于刚度匹配碳纤维复合材料/铝合金胶接接头承载性能研究[D]. 长沙: 国防科技大学, 2017. |
[25] | WANG Shuxin. Mechanical properties of CFRP-aluminum adhesive joint with equivalent stiffness[D]. Changsha: National University of Defense Techno-logy, 2017. |
[26] | 胡光山, 顾时茂, 贺丽丽, 等. 钢铝混合后地板总成的自冲铆连接性能研究[J]. 汽车工程学报, 2020, 10(3): 213-218. |
[26] | HU Guangshan, GU Shimao, HE Lili, et al. Research on properties of self-piercing riveted connections for aluminum-steel rear floor assembly[J]. Chinese Journal of Automotive Engineering, 2020, 10(3): 213-218. |
[27] | 中华人民共和国国家质量监督检验检疫总局. 开口型平圆头抽芯铆钉 51级: GB/T 12618.4—2006[S]. 北京: 中国标准出版社, 2006. |
[27] | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Open end blind rivets with break pull mandrel and protruding head—Property class 51: GB/T 12618.4—2006[S]. Beijing: Standards Press of China, 2006. |
[28] | ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M-17[S]. West Conshohocken, USA: ASTM International, 2017. |
[29] | The International Organization for Standardization (ISO). Resistance welding-Destructive testing of welds-Specimen dimensions and procedure for cross tension testing of resistance spot and embossed projection welds: ISO 14272—2016[S]. Vernier, Geneva, Switzerland: ISO, 2016. |
[30] | 汪林, 余海燕. 碳纤维复合材料铆接接头的失效行为和失效机理[J]. 机械设计与研究, 2020, 36(3): 176-181. |
[30] | WANG Lin, YU Haiyan. Study on the failure beha-vior and failure mechanism of CFRP/CFRP riveted joints[J]. Machine Design & Research, 2020, 36(3): 176-181. |
/
〈 |
|
〉 |