电子信息与电气工程

非对称柔性支撑龙门双驱平台的解耦与同步控制

展开
  • 上海交通大学 自动化系;系统控制与信息处理教育部重点实验室;上海工业智能管控工程技术研究中心,上海 200240
位广宇(1997-),硕士生,从事高性能伺服与精密运动控制研究.

收稿日期: 2021-11-12

  修回日期: 2022-01-09

  录用日期: 2022-01-11

  网络出版日期: 2023-02-17

基金资助

上海市科技攻关揭榜挂帅项目(YDZX20213100003021);中国移动-教育部智能制造联合基金(MCM20180703)

Decoupling and Synchronization Control of Asymmetric Flexure-Linked Dual-Drive Gantry Stage

Expand
  • Department of Automation; Key Laboratory of System Control and Information Processing of the Ministry of Education; Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-11-12

  Revised date: 2022-01-09

  Accepted date: 2022-01-11

  Online published: 2023-02-17

摘要

针对采用非对称柔性支撑结构的龙门双驱运动平台,提出基于模型补偿扩张状态观测器的解耦与同步控制策略.考虑柔性支撑结构特点和负载加速度对龙门平动、转动模态的影响,采用拉格朗日方程建立了龙门动力学模型.依据该模型设计平动和转动控制回路并采用带有已知耦合项补偿的扩张状态观测器,估计并抑制由建模误差和未知耦合项等因素组成的总扰动.试验结果表明,该控制框架与解耦策略能有效解除双驱动轴间的动态耦合并抑制扰动,显著提升龙门试验台的动态响应和同步精度,且具有部署简单、所需测量模型参数少等优点.

本文引用格式

位广宇, 谷朝臣, 杨舒盛, 关新平 . 非对称柔性支撑龙门双驱平台的解耦与同步控制[J]. 上海交通大学学报, 2023 , 57(5) : 593 -600 . DOI: 10.16183/j.cnki.jsjtu.2021.456

Abstract

A decoupling and synchronization control strategy based on a model-compensated extended state observer is proposed in control of a dual-drive gantry positioning stage with asymmetric flexure-linked structures. A gantry dynamic model considering the features of the flexure-linked structures and the impact of load acceleration is built using Lagrangian equations. Translational and rotational control loops are designed according to this model, while extended state observers with compensation of known coupling items in the model are deployed in each control loop to estimate and attenuate the total disturbances composed of unmodeled dynamics, unknown couplings, etc. The experimental results show that the proposed control strategy, which is simple to realize and requires few parameters to be measured, can effectively decouple the dynamics of dual axes and attenuates disturbances, greatly improving the dynamic response and synchronization accuracy of the gantry stage.

参考文献

[1] 李超.冗余直驱龙门系统的多输入多输出精密运动控制[D]. 杭州: 浙江大学, 2018.
[1] LI Chao. MIMO precision motion control of redundantly driven gantry systems with direct actuators[D]. Hangzhou: Zhejiang University, 2018.
[2] KAMALDIN N, CHEN S L, TEO C S, et al. A novel adaptive jerk control with application to large workspace tracking on a flexure-linked dual-drive gantry[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5353-5363.
[3] GIAM T S, TAN K K, HUANG S. Precision coordinated control of multi-axis gantry stages[J]. ISA Transactions, 2007, 46(3): 399-409.
[4] GARCíA-HERREROS I, KESTELYN X, GOMAND J, et al. Model-based decoupling control method for dual-drive gantry stages: A case study with experimental validations[J]. Control Engineering Practice, 2013, 21(3): 298-307.
[5] MA J, CHEN S L, KAMALDIN N, et al. Integrated mechatronic design in the flexure-linked dual-drive gantry by constrained linear-quadratic optimization[J]. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2408-2418.
[6] 黎炜天, 廖俊鸿, 王忠诚. 基于终端滑模控制的龙门平台同步控制设计[J]. 仪表技术, 2020(5): 36-40.
[6] LI Weitian, LIAO Junhong, WANG Zhongcheng. Design of synchronous control on the gantry platform based on sliding mode control[J]. Instrumentation Technology, 2020(5): 36-40.
[7] 李萍, 朱国力, 龚时华, 等. 基于干扰观测器的龙门机床双驱系统的同步控制[J]. 中国机械工程, 2016, 27(19): 2630-2636.
[7] LI Ping, ZHU Guoli, GONG Shihua, et al. Synchronous control of dual-drive system in gantry-type machine tools based on disturbance observer[J]. China Mechanical Engineering, 2016, 27(19): 2630-2636.
[8] JUNG H, OH S. Disturbance observer based decoupling control to suppress rotational motion of cross-coupled gantry stage[C]//2019 IEEE 28th International Symposium on Industrial Electronics. Vancouver, Canada: IEEE, 2019: 503-508.
[9] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
[10] YANG J, CHEN W H, LI S H, et al. Disturbance/uncertainty estimation and attenuation techniques in PMSM drives—A survey[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3273-3285.
[11] 李大字, 李憧, 靳其兵. 不确定系统的滑模与自抗扰控制方法[J]. 上海交通大学学报, 2016, 50(6): 917-922.
[11] LI Dazi, LI Chong, JIN Qibing. Sliding mode active disturbance rejection control of uncertain system[J]. Journal of Shanghai Jiao Tong University, 2016, 50(6): 917-922.
[12] LI P, ZHU G L, HE B N, et al. Synchronization control for dual-drive system of gantry-type machine tools based on extended state observer[C]// 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Auckland, New Zealand: IEEE, 2018: 1299-1304.
[13] 谷朝臣, 位广宇, 杨舒盛. 龙门滑台柔性铰链支撑组件及其龙门双驱装置: CN 113334096 A[P]. 2021-09-03 [2021-11-10].
[13] GU Chaochen, WEI Guangyu, YANG Shusheng. Flexure link supporting component and dual-drive device for gantry positioning stage: CN 113334096 A[P]. 2021-09-03 [2021-11-10].
[14] 王永岗. 分析力学[M]. 北京: 清华大学出版社, 2019.
[14] WANG Yonggang. Analytical mechanics[M]. Beijing: Tsinghua University Press, 2019.
[15] LI S H, YANG J, CHEN W H, et al. Generalized extended state observer based control for systems with mismatched uncertainties[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4792-4802.
文章导航

/