船舶海洋与建筑工程

基于BESO算法的高桩承台式水平轴风力机支撑结构优化

展开
  • 1.上海交通大学 船舶海洋与建筑工程学院,上海 200240
    2.上海交通大学 海洋工程国家重点实验室,上海 200240
    3.湘潭大学 土木工程与力学学院,湖南 湘潭 411105
占玲玉(1998-),硕士生,从事海上风机结构优化、减振研究.

收稿日期: 2022-05-24

  修回日期: 2022-10-18

  录用日期: 2022-11-10

  网络出版日期: 2023-02-17

基金资助

上海市教育委员会科研创新计划自然科学重大项目(2019-01-07-00-02-E00066);国家自然科学基金(52122110);国家自然科学基金(42076210);上海市曙光计划(19SG10);上海交通大学深蓝计划(SL2020PT201);湖南省自然科学基金(2021JJ50027)

Support Structure Optimization of High-Pile Cap Supported Horizontal Axis Wind Turbine System Based on BESO Algorithm

Expand
  • 1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China

Received date: 2022-05-24

  Revised date: 2022-10-18

  Accepted date: 2022-11-10

  Online published: 2023-02-17

摘要

研究大型水平轴风力机塔筒的合理支撑结构形式对风力发电结构系统安全至关重要.针对高桩承台式水平轴风力机,基于反比例型删除率的双向渐进结构优化(BESO)算法,拓扑优化风力机塔筒结构,根据计算流体动力学方法和桩土相互作用原理,建立考虑桩土作用的风力机结构风致动力响应数值模型,比较分析优化前后风力机结构动力响应特性,验证结构优化方法的可靠性.经拓扑优化得到新的高桩承台水平轴风力机支撑结构,相较于初始结构,优化后的支撑结构风致动力响应显著降低,成果可为高桩承台式水平轴风力机支撑结构设计优化提供技术参考.

本文引用格式

占玲玉, 何文君, 周岱, 韩兆龙, 朱宏博, 张凯, 涂佳黄 . 基于BESO算法的高桩承台式水平轴风力机支撑结构优化[J]. 上海交通大学学报, 2023 , 57(8) : 939 -947 . DOI: 10.16183/j.cnki.jsjtu.2022.182

Abstract

The study of reliable support structure is of great significance to the safety of large-scaled horizontal axis wind turbine (HAWT) system. In this paper, for cap-supported HAWT with high pile, the bidirectional evolutional structure optimization (BESO) algorithm based on inversely proportional deletion rate was used to optimize its support structure. Using computational fluid dynamics (CFD) and the principle of pile-soil interaction, the finite element model of HAWT was established, where the wind load and pile-soil interaction were taken into consideration. The reliability of the structural optimization method was verified through the comparison of the dynamic response characteristics between the initial and the optimized model. The results show that the current BESO algorithm can effectively generate a novel support structure form for high-pile HAWT, whose dynamic response is significantly reduced. The results can provide useful references for HAWTs designs.

参考文献

[1] AGUILAR VARGAS S, TELLES ESTEVES G R, MA?AIRA P M, et al. Wind power generation: A review and a research agenda[J]. Journal of Cleaner Production, 2019, 218: 850-870.
[2] KAEWNIAM P, CAO M S, ALKAYEM N F, et al. Recent advances in damage detection of wind turbine blades: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112723.
[3] 孟珣. 基于动力特性的海上风力发电支撑结构优化技术研究[D]. 青岛: 中国海洋大学, 2010.
[3] MENG Xun. Optimum technology on support structures of offshore wind turbine based on dynamic properties[D]. Qingdao: Ocean University of China, 2010.
[4] GENTILS T, WANG L, KOLIOS A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied Energy, 2017, 199: 187-204.
[5] OEST J, SANDAL K, SCHAFHIRT S, et al. On gradient-based optimization of jacket structures for offshore wind turbines[J]. Wind Energy, 2018, 21(11): 953-967.
[6] 葛旭, 徐业鹏, 黄丹. 基于进化策略的海上风电支撑结构多参数同步优化设计[J]. 可再生能源, 2020, 38(7): 900-904.
[6] GE Xu, XU Yepeng, HUANG Dan. Multi-parameter simultaneously optimal design of support structure for offshore wind turbine based on evolutionary strategy[J]. Renewable Energy Resources, 2020, 38(7): 900-904.
[7] TIAN X J, SUN X Y, LIU G J, et al. Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean Engineering, 2022, 243: 110084.
[8] 王章骏, 许平, 邢杰, 等. 基于改进BESO算法的带隔板薄壁方管耐撞性拓扑优化[J]. 铁道科学与工程学报, 2021, 18(6): 1573-1581.
[8] WANG Zhangjun, XU Ping, XING Jie, et al. Crashworthiness topology optimization of the thin-walled square tube with diaphragms based on improved BESO algorithm[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1573-1581.
[9] 刘昆, 郭德松, 王仁华, 等. 基于改进BESO方法的多工况船体开孔孔形优化[J]. 中国海洋平台, 2021, 36(4): 1-8.
[9] LIU Kun, GUO Desong, WANG Renhua, et al. Shape optimization of hull structure hole opening under multiple conditions based on improved BESO method[J]. China Offshore Platform, 2021, 36(4): 1-8.
[10] YAN X, BAO D W, ZHOU Y F, et al. Detail control strategies for topology optimization in architectural design and development[J]. Frontiers of Architectural Research, 2022, 11(2): 340-356.
[11] 周豪, 江滨. 矶崎新引领世界建筑创新潮流的先锋[J]. 中国勘察设计, 2019(4): 68-75.
[11] ZHOU Hao, JIANG Bin. Arata Isozaki is a pioneer in the world of architectural innovation[J]. China Engineering & Consulting, 2019(4): 68-75.
[12] 孙明明, 李昕, 李炜. 海上风力机高桩承台基础反应特性研究[J]. 太阳能学报, 2020, 41(7): 265-273.
[12] SUN Mingming, LI Xin, LI Wei. Study on response of offshore wind turbine with high-pile cap foundation[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 265-273.
[13] FUTAI M M, HAIGH S K, MADABHUSHI G S P. Comparison of the dynamic responses of monopiles and gravity base foundations for offshore wind turbines in sand using centrifuge modelling[J]. Soils and Foundations, 2021, 61(1): 50-63.
[14] ABHINAV K A, SAHA N. Nonlinear dynamical behaviour of jacket supported offshore wind turbines in loose sand[J]. Marine Structures, 2018, 57: 133-151.
[15] 刘晨晨, 张琪, 李明广, 等. 波浪与地震荷载共同作用下桩的动力响应[J]. 上海交通大学学报, 2021, 55(6): 638-644.
[15] LIU Chenchen, ZHANG Qi, LI Mingguang, et al. Dynamic response of pile at waterwave load and seismic load[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 638-644.
[16] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009: 1-75.
[17] Det Norske Veritas. Support structures for wind turbines: DNVGL-ST-0126[S/OL]. (2021-12-01) [2022-10-18]. https//www.dnv.com/energy/standards-guidelines/dnv-st-0126-support-structures-for-wind-turbines.html.
[18] 张佳丽, 李少彦. 海上风电产业现状及未来发展趋势展望[J]. 风能, 2018(10): 48-52.
[18] ZHANG Jiali, LI Shaoyan. Present situation and future development trend of offshore wind power industry[J]. Wind Energy, 2018(10): 48-52.
[19] 中华人民共和国交通运输部. 水运工程大体积混凝土温度裂缝控制技术规程: JTS 202-1—2022[S]. 北京: 人民交通出版社, 2022.
[19] Ministry of Transport of the People’s Republic of China. Technical specification for thermal cracking control of mass concrete of port and waterway engineering: JTS 202-1—2022[S]. Beijing: China Communications Press, 2022.
[20] JUNG S, KIM S R, PATIL A, et al. Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower[J]. Ocean Engineering, 2015, 109: 479-488.
[21] CHEN J Y, MATEREK B A, CARPENTER J F, et al. Analysis of potential conservatism in foundation design for offshore platform assessment[R]. Texas: Offshore Technology Research Center, 2009.
[22] 张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009, 27(6): 729-735.
[22] ZHANG Jian, YANG Qinshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6): 729-735.
[23] ALI H M, AL-ESBE I, ALWAN H M. A review of offshore wind turbines: Global added capacity, monopile structure foundations stresses and deflection[J]. Periodicals of Engineering and Natural Sciences, 2021, 9(2): 712.
[24] BURTON T, JENKINS N, BOSSANYI E, et al. Aerodynamics of horizontal axis wind turbines[M]. Chichester: John Wiley & Sons, 2021: 15-20.
[25] 国家能源局. 海上风电场工程风电机组基础设计规范: NB/T 10105—2018[S]. 北京: 中国水利水电出版社, 2019.
[25] National Energy Administration. Code for design of wind turbine foundations for offshore wind power projects: NB/T 10105—2018[S]. Beijing: China Water & Power Press, 2019.
[26] KATONA M C, ZIENKIEWICZ O C. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21(7): 1345-1359.
[27] WANG K, MOAN T, HANSEN M O L. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater[J]. Wind Energy, 2016, 19(10): 1853-1870.
[28] 张森文, 曹开彬. 计算结构动力响应的状态方程直接积分法[J]. 计算力学学报, 2000, 17(1): 94-97.
[28] ZHANG Senwen, CAO Kaibin. Direct integration of state equation method for dynamic response of structure[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 94-97.
[29] TIAN X J, WANG Z, LIU D, et al. Jack-up platform leg optimization by topology optimization algorithm-BESO[J]. Ocean Engineering, 2022, 257: 2-15.
[30] ZUO W J, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, 2017, 55(2): 477-491.
[31] MOVAHEDI RAD M, HABASHNEH M, LóGó J. Elasto-Plastic limit analysis of reliability based geometrically nonlinear bi-directional evolutionary topology optimization[J]. Structures, 2021, 34: 1720-1733.
[32] 罗静, 张大可, 李海军, 等. 基于一种动态删除率的ESO方法[J]. 计算力学学报, 2015, 32(2): 274-279.
[32] LUO Jing, ZHANG Dake, LI Haijun, et al. ESO method based on a kind of dynamic deletion rate[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 274-279.
[33] TRAN T T, KIM D H. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion[J]. Renewable Energy, 2016, 90: 204-228.
[34] WEN B R, TIAN X L, DONG X J, et al. Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine[J]. Energy, 2017, 141: 2054-2068.
文章导航

/