周期DoS攻击下变周期切换正系统的安全控制
收稿日期: 2021-11-08
修回日期: 2022-12-29
录用日期: 2022-01-11
网络出版日期: 2023-02-17
基金资助
国家自然科学基金(62103129)
Secure Control for Variable Periodic Switched Positive Systems Under Periodic DoS Attack
Received date: 2021-11-08
Revised date: 2022-12-29
Accepted date: 2022-01-11
Online published: 2023-02-17
周期拒绝服务(DoS)攻击阻止了切换正系统的测量通道与控制通道通过网络进行信息交换.此外,系统切换行为、DoS攻击引起的混杂行为以及正性约束增加了安全控制研究的困难.针对遭受周期DoS攻击的网络化切换正系统,提出一种基于切换行为的建模方法并研究其安全控制问题.在变周期切换条件下,通过限定切换周期与DoS攻击周期的关系,构造多线性余正Lyapunov函数,并得到闭环系统为正系统以及渐近稳定条件,进而基于正系统理论设计安全状态反馈控制器.在此基础上,讨论周期DoS攻击下系统进行恒定周期切换的情形.最后,通过仿真示例验证结果的有效性.
关键词: 切换正系统; 周期拒绝服务攻击; 多线性余正Lyapunov函数; 安全控制
刘教, 孔祥娜, 张甜甜 . 周期DoS攻击下变周期切换正系统的安全控制[J]. 上海交通大学学报, 2023 , 57(5) : 624 -630 . DOI: 10.16183/j.cnki.jsjtu.2021.445
Periodic denial-of-service (DoS) attack prevents the information exchange of measurement channel and control channel for switched positive systems through the network. Moreover, the coupling of system switching behavior and hybrid behavior due to DoS attack and positive constraint also increase the difficulty in secure control research. The secure control problem of networked switched positive systems under periodic DoS attack is studied and a modeling method based on switching behavior is proposed in this paper. Under variable periodic switching, the multiple linear copositive Lyapunov function is constructed to obtain the positive and asymptotically stable condition for the closed-loop system by limiting the relationship between the switching period and the DoS attack period, and a secure state feedback controller based on the positive system theory is designed, based on which, the constant periodic switching case is also discussed by using the positive system theory. Finally, the validity of the results is verified by a simulation example.
[1] | YAN J J, YANG G H. Switching resilient control scheme for cyber-physical systems against DoS attacks[J]. Journal of the Franklin Institute, 2021, 358(8): 4257-4276. |
[2] | DING D, TANG Z, WANG Y, et al. Secure synchronization of complex networks under deception attacks against vulnerable nodes[J]. Applied Mathematics and Computation, 2021, 399: 126017. |
[3] | 王志文, 刘伟. 拒绝服务攻击下信息物理系统事件触发广义预测控制[J]. 上海交通大学学报, 2020, 54(9): 910-915. |
[3] | WANG Zhiwen, LIU Wei. Event-triggered generalized predictive control of cyber-physical systems under denial-of-service attacks[J]. Journal of Shanghai Jiao Tong University, 2020, 54(9): 910-915. |
[4] | YANG F, GU Z, TIAN E G, et al. Event-based switching control for networked switched systems under nonperiodic DoS jamming attacks[J]. IET Control Theory & Applications, 2020, 14(19): 3097-3106. |
[5] | ZHU Y Z, ZHENG W X. Observer-based control for cyber-physical systems with periodic DoS attacks via a cyclic switching strategy[J]. IEEE Transactions on Automatic Control, 2020, 65(8): 3714-3721. |
[6] | XING M P, LU J Q, QIU J L, et al. Synchronization of complex dynamical networks subject to DoS attacks: An improved coding-decoding protocol[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 102-113. |
[7] | WANG P B, REN X M, ZHENG D D. Event-triggered resilient control for cyber-physical systems under periodic DoS jamming attacks[J]. Information Sciences, 2021, 577: 541-556. |
[8] | YE D, SONG Y B. Optimal periodic DoS attack with energy harvester in cyber-physical systems[J]. Neurocomputing, 2020, 390: 69-77. |
[9] | HU S L, HAN Y X, CHEN X L, et al. Event-triggered H∞ filtering over wireless sensor networks under unknown periodic DoS jamming attacks[C]// 2018 Chinese Control and Decision Conference. Shenyang, China: IEEE, 2018: 1433-1438. |
[10] | 宋秀兰, 俞立. 一类约束线性切换系统的滚动优化控制[J]. 上海交通大学学报, 2015, 49(11): 1635-1640. |
[10] | SONG Xiulan, YU Li. Receding optimization control for a class of constrained linear switched systems[J]. Journal of Shanghai Jiao Tong University, 2015, 49(11): 1635-1640. |
[11] | REN H L, ZONG G D, LI T S. Event-triggered finite-time control for networked switched linear systems with asynchronous switching[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(11): 1874-1884. |
[12] | QU H Q, ZHAO J. Stabilisation of switched linear systems under denial of service[J]. IET Control Theory & Applications, 2020, 14(11): 1438-1444. |
[13] | HAN Y C, LIAN J, HUANG X. Event-triggered H∞ control of networked switched systems subject to denial-of-service attacks[J]. Nonlinear Analysis: Hybrid Systems, 2020, 38: 100930. |
[14] | LIU J, YANG Y K, LI H C, et al. Stabilisation for switched positive systems under extended asynchronous switching[J]. IET Control Theory & Applications, 2019, 13(16): 2702-2709. |
[15] | HU J J, LIU D X, XIA D B, et al. Robust stabilization of switched positive discrete-time systems with asynchronous switching and input saturation[J]. Optimal Control Applications and Methods, 2019, 40(1): 105-118. |
[16] | OGURA M, PRECIADO V M. Stability of spreading processes over time-varying large-scale networks[J]. IEEE Transactions on Network Science and Engineering, 2016, 3(1): 44-57. |
[17] | SON J H, AHN H S. Formation coordination for the propagation of a group of mobile agents via self-mobile localization[J]. IEEE Systems Journal, 2015, 9(4): 1285-1298. |
[18] | RAMI M A, TADEO F. Controller synthesis for positive linear systems with bounded controls[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54(2): 151-155. |
[19] | KUZMANOVIC A, KNIGHTLY E W. Low-rate TCP-targeted denial of service attacks and counter strategies[J]. IEEE/ACM Transactions on Networking, 2006, 14(4): 683-696. |
/
〈 |
|
〉 |