船舶海洋与建筑工程

交变工况下深海装备机械密封端面温升和磨损特性

展开
  • 浙江工业大学 机械工程学院, 杭州 310023
郑思敏(1996-),硕士生,从事流体机械密封研究.

收稿日期: 2021-12-20

  修回日期: 2022-01-07

  录用日期: 2022-01-14

  网络出版日期: 2023-02-17

基金资助

浙江省自然科学基金项目(LY21E050009);浙江省自然科学基金项目(LGG21E050018);浙江省重大项目(LD21E050002);国家自然科学基金项目(52105217)

Temperature Rise and Wear Characteristics of Mechanical Seal Face of Deep-Sea Equipment Under Alternating Conditions

Expand
  • College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Received date: 2021-12-20

  Revised date: 2022-01-07

  Accepted date: 2022-01-14

  Online published: 2023-02-17

摘要

为了研究深海复杂恶劣工况对深海涉水装备动力装置的影响,以深海推进器用接触式机械密封为研究对象,建立其二维轴对称有限元模型,探究了交变工况对密封端面温升的影响;在自行搭建的试验台上进行了机械密封拟实工况试验,监测了端面温升情况,测量并分析了端面形貌及磨损特性.结果表明:交变工况对密封环温度场有显著影响,且端面温升呈现明显的交变瞬态特性;交变工况试验后动环端面粗糙度显著增大,工况瞬变使得端面接触状态不稳定,端面发生磨粒磨损,出现明显的凹坑和深浅不一且密集分布的犁沟;交变转速较交变介质压力对端面温升及磨损的影响程度更大.数值模拟与试验结果趋势吻合良好,为深海推进器机械密封结构设计提供必要的理论指导及试验依据.

本文引用格式

郑思敏, 滕黎明, 赵文静, 江锦波, 王梦娇, 彭旭东 . 交变工况下深海装备机械密封端面温升和磨损特性[J]. 上海交通大学学报, 2023 , 57(8) : 948 -962 . DOI: 10.16183/j.cnki.jsjtu.2021.528

Abstract

In order to study the effects of deep-sea complex and severe working conditions on the power device of deep-sea wading equipment, taking the contacting mechanical seal for deep-sea propeller as the research object, a two-dimensional axisymmetric finite element model is established. The influence of alternating conditions on the temperature rise of seal face is explored. The pseudo-real condition test of the mechanical seal is conducted on a self-built test rig, and the temperature rise of seal face is monitored. The surface morphology and wear characteristics are measured and analyzed. The results show that the alternating conditions have a significant influence on the temperature field of the seal ring, and the temperature rise of seal face shows an obvious alternating transient characteristic. After the alternating condition test, the end face roughness of the rotating ring increases significantly. The transient working condition makes the contact state between the seal faces unstable. Abrasive wear occurs on the end face, with obvious pits and densely distributed furrows of different depths. The alternating speed has a greater influence on the temperature rise and wear of the end face than that of the alternating medium pressure. The numerical simulation results are in good agreement with the experimental results, which provides a necessary theoretical guidance and experimental basis for the structural design of the mechanical seal of the deep-sea propeller.

参考文献

[1] 朱大奇, 胡震. 深海潜水器研究现状与展望[J]. 安徽师范大学学报(自然科学版), 2018, 41(3): 205-216.
[1] ZHU Daqi, HU Zhen. Research status and prospect of deep-sea underwater vehicle[J]. Journal of Anhui Normal University (Natural Science), 2018, 41(3): 205-216.
[2] 高斌超, 孟祥铠, 李纪云, 等. 机械密封热力耦合有限元模型与密封性能分析[J]. 摩擦学学报, 2015, 35(5): 550-556.
[2] GAO Binchao, MENG Xiangkai, LI Jiyun, et al. Thermal-mechanical coupled finite element model and seal performance analysis of mechanical seals[J]. Tribology, 2015, 35(5): 550-556.
[3] PASCOVICI M D, ETSION I. A thermo-hydrodynamic analysis of a mechanical face seal[J]. ASME Journal of Tribology, 1992, 114(4): 639-645.
[4] BLASIAK S. An analytical approach to heat transfer and thermal distortions in non-contacting face seals[J]. International Journal of Heat and Mass Transfer, 2015, 81: 90-102.
[5] TOURNERIE B, DANOS J C, FRêNE J. Three-dimensional modeling of THD lubrication in face seals[J]. Journal of Tribology, 2001, 123(1): 196-204.
[6] B?ASIAK S, KUNDERA C. A numerical analysis of the grooved surface effects on the thermal behavior of a non-contacting face seal[J]. Procedia Engineering, 2012, 39: 315-326.
[7] JIN J, PENG X D, MENG X K, et al. Analysis of stability of two-phase flow mechanical seal with spiral groove under high speeds[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 1-20.
[8] MENG X K, ZHAO W J, SHEN M X, et al. Thermohydrodynamic analysis on herringbone-grooved mechanical face seals with a quasi-3D model[J]. Journal of Engineering Tribology, 2018, 232(11): 1402-1414.
[9] BRUNETIèRE N, TOURNERIE B, FRěNE J. A simple and easy-to-use TEHD model for non-contacting liquid face seals[J]. Tribology Transactions, 2003, 46(2): 187-192.
[10] BRUNETIèRE N, APOSTOLESCU A. A simple approach to the thermos elasto hydrodynamic behavior of mechanical face seals[J]. Tribology Transactions, 2009, 52(2): 243-255.
[11] BRUNETIèRE N. An analytical approach of the thermoelasto hydrodynamic behaviour of mechanical face seals operating in mixed lubrication[J]. Journal of Engineering Tribology, 2010, 224(12): 1221-1233.
[12] NYEMECK A P, BRUNETIèRE N, TOURNERIE B. A mixed thermoelasto hydrodynamic lubrication analysis of mechanical face seals by a multiscale approach[J]. Tribology Transactions, 2015, 58(5): 836-848.
[13] AYADI K, BRUNETIèRE N, TOURNERIE B, et al. Experimental and numerical study of the lubrication regimes of a liquid mechanical seal[J]. Tribology International, 2015, 92: 96-108.
[14] WEN Q F, LIU Y, HUANG W F, et al. The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(10): 1920-1929.
[15] LIU Y, LIU W, LI Y J, et al. Mechanism of a wavy-tilt-dam mechanical seal under different working conditions[J]. Tribology International, 2015, 90: 43-54.
[16] 彭旭东, 刘伟, 白少先, 等. 热弹变形对核主泵用流体静压型机械密封性能的影响[J]. 机械工程学报, 2010, 46(23): 146-153.
[16] PENG Xudong, LIU Wei, BAI Shaoxian, et al. Effects analysis of thermo-elastic deformation on the performance of hydrostatic mechanical seals in reactor coolant pumps[J]. Journal of Mechanical Engineering, 2010, 46(23): 146-153.
[17] 彭旭东, 刘鑫, 孟祥铠, 等. 核主泵用双锥度端面流体静压机械密封热弹流效应研究[J]. 摩擦学学报, 2012, 32(3): 244-250.
[17] PENG Xudong, LIU Xin, MENG Xiangkai, et al. Thermo-elasto-hydrostatic effect analysis of a double tapered hydrostatic mechanical seal in reactor coolant pumps[J]. Tribology, 2012, 32(3): 244-250.
[18] YANG X, PENG X D, MENG X K, et al. Thermo-elasto-hydrodynamic analysis of triangular textured mechanical face seals[J]. Applied Physics & Engineering, 2019, 20(11): 864-881.
[19] HARP S, SALANT R F. Analysis of mechanical seal behavior during transient operation[J]. Journal of Tribology, 1998, 120(2): 191-197.
[20] GREEN I. A transient dynamic analysis of mechanical seals including asperity contact and face deformation[J]. Tribology Transactions, 2002, 45(3): 284-293.
[21] 孟祥铠, 彭旭东, 王乐勤. 瞬态启停机械密封轴对称动力学模型与密封行为分析[J]. 化工学报, 2011, 62(6): 1620-1625.
[21] MENG Xiangkai, PENG Xudong, WANG Leqin. Axisymmetric dynamic model and seal behavior analysis of mechanical seals during startup and shutdown operation[J]. CIESC Journal, 2011, 62(6): 1620-1625.
[22] ZHAO W G, ZHANG G Y, DONG G N. Friction and wear behavior of different seal materials under water-lubricated conditions[J]. Friction, 2021, 9(4): 697-709.
[23] HUANG W F, LIN Y B, LIU Y, et al. Face rub-impact monitoring of a dry gas seal using acoustic emission[J]. Tribology Letters, 2013, 52(2): 253-259.
[24] YIN Y, HUANG W F, LIU X F, et al. Analysis of the dynamic friction of a gas face seal based on acoustic emissions[J]. Tribology Letters, 2018, 66(3): 1-10.
[25] HU S T, HUANG W F, SHI X, et al. Mechanism of bi-Gaussian surface topographies on generating acoustic emissions under a sliding friction[J]. Tribology International, 2019, 131: 64-72.
[26] HU S T, HUANG W F, SHI X, et al. Bi-fractal feature of bi-Gaussian stratified surfaces[J]. Tribology International, 2019, 134: 427-434.
[27] HU S T, REDDYHOFF T, WEN J, et al. Characterization and simulation of bi-Gaussian surfaces induced by material transfer and additive processes[J]. Tribology International, 2019, 136: 31-44.
[28] JIN J, PENG X D, JIANG J B, et al. Frictional characteristics of impregnated graphite with different graphitization degree versus chromium stainless steel under varying PV values[J]. Tribology International, 2020, 146: 106063.
[29] 彭旭东, 何良杰, 江锦波, 等. 浸酚醛树脂石墨/SiC密封材料摩擦学特性研究[J]. 中国机械工程, 2021, 32(11): 1283-1292.
[29] PENG Xudong, HE Liangjie, JIANG Jinbo, et al. Study on tribological properties of phenolic resin impregnated graphite/SiC ceramic sealing materials[J]. China Mechanical Engineering, 2021, 32(11): 1283-1292.
[30] 倪成良, 江锦波, 彭旭东, 等. 浸酚醛树脂石墨与9Cr18不锈钢配副的摩擦磨损正交试验研究[J]. 流体机械, 2019, 47(4): 1-5.
[30] NI Chengliang, JIANG Jinbo, PENG Xudong, et al. Orthogonal experimental study on tribological behavior of phenolic resin impregnated graphite-9Cr18 stainless steel friction pairs in a mechanical seal[J]. Fluid Machinery, 2019, 47(4): 1-5.
[31] JIA Q, YUAN X Y, ZHANG G Y, et al. Dry friction and wear characteristics of impregnated graphite in a corrosive environment[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 965-971.
[32] 王建磊, 张琛, 王晓虎, 等. N2O4环境下液体火箭发动机涡轮泵机械密封浸渍石墨的磨损机理研究[J]. 机械工程学报, 2019, 55(7): 119-127.
[32] WANG Jianlei, ZHANG Chen, WANG Xiaohu, et al. Wear mechanism of liquid rocket engine turbopump mechanical seal graphite surface in the N2O4 environment[J]. Journal of Mechanical Engineering, 2019, 55(7): 119-127.
[33] 胡浩龙, 龙雷, 沈雪, 等. 深海液压系统压力补偿器研究[J]. 海洋工程装备与技术, 2018, 5(S1): 209-213.
[33] HU Haolong, LONG Lei, SHEN Xue, et al. Research on pressure compensator used for deep-sea hydraulic system[J]. Ocean Engineering Equipment and Technology, 2018, 5(S1): 209-213.
[34] 于会民, 刘可安, 罗凌波. 深海装备压力补偿器及测试系统的设计[J]. 液压气动与密封, 2020, 40(5): 51-53.
[34] YU Huimin, LIU Kean, LUO Lingbo. Design of pressure compensator for deep-sea equipment[J]. Hydraulics Pneumatics & Seals, 2020, 40(5): 51-53.
[35] 高磊. 喷水推进型深海滑翔机动力学建模与低能耗控制研究[D]. 武汉: 华中科技大学, 2018.
[35] GAO Lei. Research on the dynamic modeling and energy-saving control for a water-jet hybrid glider[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[36] LUAN Z G, KHONSARI M M. Heat transfer correlations for laminar flows within a mechanical seal chamber[J]. Tribology International, 2009, 42(5): 770-778.
[37] 魏龙, 顾伯勤, 刘其和, 等. 接触式机械密封端面平均温度耦合计算方法[J]. 化工学报, 2014, 65(9): 3568-3575.
[37] WEI Long, GU Boqin, LIU Qihe, et al. Average temperature coupling calculation method for end faces of contact mechanical seals[J]. CIESC Journal, 2014, 65(9): 3568-3575.
[38] 周宇坤, 彭旭东, 赵文静, 等. 机械密封动环外周表面织构换热机理及结构优化[J]. 摩擦学学报, 2020, 40(4): 538-550.
[38] ZHOU Yukun, PENG Xudong, ZHAO Wenjing, et al. Heat transfer mechanism and optimization of circumferential texture of mechanical seal[J]. Tribology, 2020, 40(4): 538-550.
[39] 顾永泉. 机械密封实用技术[M]. 北京: 机械工业出版社, 2001.
[39] GU Yongquan. Mechanical seal practical technology[M]. Beijing: China Machine Press, 2001.
[40] 朱学明. 机械密封性能的数值分析及优化研究[D]. 武汉: 武汉理工大学, 2005.
[40] ZHU Xueming. Research on numerical analysis and optimization of mechanical sealing performance[D]. Wuhan: Wuhan University of Technology, 2005.
[41] 魏龙, 顾伯勤, 张鹏高, 等. 机械密封磨合过程端面接触特性[J]. 化工学报, 2012, 63(10): 3202-3207.
[41] WEI Long, GU Boqin, ZHANG Penggao, et al. Contact characterizations of end faces in mechanical seals running-in[J]. CIESC Journal, 2012, 63(10): 3202-3207.
[42] 彭旭东, 金杰, 李定, 等. 高速涡轮泵机械密封端面温度变化规律研究[J]. 摩擦学学报, 2019, 39(3): 313-318.
[42] PENG Xudong, JIN Jie, LI Ding, et al. Analysis of face temperature in mechanical seal applied in the high speed turbo pump[J]. Tribology, 2019, 39(3): 313-318.
文章导航

/