新型电力系统与综合能源

黏合物质与压缩变形对燃料电池气体扩散层孔隙结构和气体渗透特性的影响

展开
  • 上海交通大学 航空航天学院,上海 200240
廖屹峰(1998-),硕士生,从事多孔介质内孔隙尺度的流动研究.

收稿日期: 2022-04-18

  修回日期: 2022-05-31

  录用日期: 2022-06-23

  网络出版日期: 2023-02-14

基金资助

国家重点研发计划(2020YFB1505500);国家重点研发计划(2020YFB1505503)

Effect of Binder and Compression on Pore Structure and Gas Permeability of Gas Diffusion Layer in PEMFC

Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-04-18

  Revised date: 2022-05-31

  Accepted date: 2022-06-23

  Online published: 2023-02-14

摘要

在气体扩散层(GDL)生产过程中,疏水黏合处理和装配压缩变形导致GDL孔隙结构和渗透特性发生变化.首先基于随机重构算法,建立一种添加黏合物质和施加不均匀压缩的GDL建模方法;然后利用格子玻尔兹曼数值仿真气体单相流动,研究黏合物质与压缩形变对燃料电池GDL孔隙结构和气体渗透特性的影响规律.计算结果表明:黏合物质与压缩形变均会导致气体扩散小尺寸孔隙结构占比增大,整体孔隙率减小;GDL的渗透率变化趋势与孔隙率一致,均降低,变化规律基本符合理论预测关系;当孔隙率相近时,压缩变形是导致的渗透率降低的关键因素.

本文引用格式

廖屹峰, 李伟鹏 . 黏合物质与压缩变形对燃料电池气体扩散层孔隙结构和气体渗透特性的影响[J]. 上海交通大学学报, 2023 , 57(7) : 899 -909 . DOI: 10.16183/j.cnki.jsjtu.2022.113

Abstract

During the production of gas diffusion layer (GDL), hydrophobic binding treatment and assembly compression lead to changes in pore structure and permeability. In this paper, a GDL model based on stochastic reconstruction is developed with binder and inhomogeneous compression. Single-phase flow of gas is simulated by utilizing the Lattice Boltzmann method and the effect of binder and compression on pore structure and permeability of GDL is explored. The results show that both the binder and the compression cause porosity to decrease and small-scale pore volume to increase, leading to the shrink of permeability. The change is basically consistent with the theoretical relationship between porosity and permeability. Moreover, the decrease of permeability caused by compression is higher than that caused by binder when porosity is similar.

参考文献

[1] WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007.
[2] ROSLI R E, SULONG A B, DAUD W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314.
[3] ZHAO Y Q, MAO Y J, ZHANG W X, et al. Reviews on the effects of contaminations and research methodologies for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23174-23200.
[4] CINDRELLA L, KANNAN A M, LIN J F, et al. Gas diffusion layer for proton exchange membrane fuel cells-A review[J]. Journal of Power Sources, 2009, 194(1): 146-160.
[5] WANG X L, ZHANG H M, ZHANG J L, et al. A bi-functional micro-porous layer with composite carbon black for PEM fuel cells[J]. Journal of Power Sources, 2006, 162(1): 474-479.
[6] IONESCU V. Finite element method modelling of a high temperature PEM fuel cell[J]. Romanian Journal of Physics, 2014, 59(3): 285-294.
[7] DAINO M M, KANDLIKAR S G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International Journal of Hydrogen Energy, 2012, 37(6): 5180-5189.
[8] BURGANOS V N, SKOURAS E D, KALARAKIS A N. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives[J]. Journal of Power Sources, 2017, 365: 179-189.
[9] THIEDMANN R, HARTNIG C, MANKE I, et al. Local structural characteristics of pore space in GDLs of PEM fuel cells based on geometric 3D Graphs[J]. Journal of The Electrochemical Society, 2009, 156(11): B1339.
[10] GAISELMANN G, FRONING D, T?TZKE C, et al. Stochastic 3D modeling of non-woven materials with wet-proofing agent[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8448-8460.
[11] NITTA I, HOTTINEN T, HIMANEN O, et al. Inhomogeneous compression of PEMFC gas diffusion layer[J]. Journal of Power Sources, 2007, 171(1): 26-36.
[12] CHEN G J, XU Q, XUAN J, et al. Numerical study of inhomogeneous deformation of gas diffusion layers on proton exchange membrane fuel cells performance[J]. Journal of Energy Storage, 2021, 44: 103486.
[13] CHIPPAR P, O K, KANG K, et al. A numerical investigation of the effects of GDL compression and intrusion in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2012, 37(7): 6326-6338.
[14] LI W Z, YANG W W, ZHANG W Y, et al. Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22194-22209.
[15] BAO Z M, LI Y N, ZHOU X, et al. Transport properties of gas diffusion layer of proton exchange membrane fuel cells: Effects of compression[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121608.
[16] RAMA P, LIU Y, CHEN R, et al. A numerical study of structural change and anisotropic permeability in compressed carbon cloth polymer electrolyte fuel cell gas diffusion layers[J]. Fuel Cells, 2011, 11(2): 274-285.
[17] 高源, 吴晓燕, 孙严博. 新型随机重构微孔隙介质模型与扩散特性[J]. 同济大学学报(自然科学版), 2017, 45(1): 109-118.
[17] GAO Yuan, WU Xiaoyan, SUN Yanbo. Characterization and diffusion in reconstructed gas diffusion layer based on stochastic method[J]. Journal of Tongji University (Natural Science), 2017, 45(1): 109-118.
[18] ARVAY A, YLI-RANTALA E, LIU C H, et al. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells-A review[J]. Journal of Power Sources, 2012, 213: 317-337.
[19] FADZILLAH D M, ROSLI M I, TALIB M Z M, et al. Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells[J]. Renewable & Sustainable Energy Reviews, 2017, 77: 1001-1009.
[20] ZENYUK I V, PARKINSON D Y, HWANG G, et al. Probing water distribution in compressed fuel-cell gas-diffusion layers using X-ray computed tomography[J]. Electrochemistry Communications, 2015, 53: 24-28.
[21] OZDEN A, SHAHGALDI S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells-With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy & Combustion Science, 2019, 74: 50-102.
[22] XIA F J, WU X L, LIU P S. Methods for determining aperture of porous materials[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(41): 8183-8188.
[23] DULLIEN F A L. Single phase flow through porous media and pore structure[J]. The Chemical Engineering Journal, 1975, 10(1): 1-34.
[24] 何玉松, 白敏丽, 郝亮. 质子交换膜燃料电池微扩散层孔隙结构与渗透率的孔隙尺度模拟[J]. 上海交通大学学报, 2020, 54(10): 1053-1064.
[24] HE Yusong, BAI Minli, HAO Liang. Pore structure and pore scale simulation of permeability of micro-porous layer in PEM fuel cell[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1053-1064.
[25] NABOVATI A, LLEWELLIN E W, SOUSA A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[J]. Composites Part A: Applied Science & Manufacturing, 2009, 40(6/7): 860-869.
[26] KOPONEN A, KANDHAI D, HELLéN E, et al. Permeability of three-dimensional random fiber webs[J]. Physical Review Letters, 1998, 80(4): 716-719.
[27] MATHIAS M F, ROTH J, FLEMING J, et al. Handbook of Fuel Cells-Fundamentals, technology and applications[M]. New York: John Wiley & Sons, 2003: 517-537.
文章导航

/