生物医学工程

基于SIDWT和迭代自一致性的快速并行成像重建方法

展开
  • 昆明理工大学 信息工程与自动化学院,昆明 650504
段继忠(1984-),副教授,现主要从事图像处理、深度学习和基于GPU的并行计算等研究;E-mail:duanjz@kust.edu.cn.

收稿日期: 2022-06-21

  修回日期: 2022-07-26

  录用日期: 2022-09-08

  网络出版日期: 2023-02-14

基金资助

国家自然科学基金地区科学基金项目(61861023)

Fast Parallel Imaging Reconstruction Method Based on SIDWT and Iterative Self-Consistency

Expand
  • Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

Received date: 2022-06-21

  Revised date: 2022-07-26

  Accepted date: 2022-09-08

  Online published: 2023-02-14

摘要

为提高并行磁共振成像的重建速度,基于平移不变离散小波变换(SIDWT)和迭代自一致性并行成像重建(SPIRiT)模型,提出一种高效的重建方法fSIDWT-SPIRiT.该方法针对含有数据一致项、校正一致项和L1范数正则项的复杂优化问题,首先将数据一致项和校正一致项进行合并处理,之后利用快速投影迭代软阈值算法进行求解以实现快速并行磁共振成像重建.最后,在不同人体器官的数据集上进行测试.仿真实验结果表明:与其他方法相比,该方法能够在保证图像重建质量的同时,具有更快的收敛速度.

本文引用格式

段继忠, 钱青青 . 基于SIDWT和迭代自一致性的快速并行成像重建方法[J]. 上海交通大学学报, 2023 , 57(5) : 582 -592 . DOI: 10.16183/j.cnki.jsjtu.2022.236

Abstract

To improve the reconstruction speed of parallel magnetic resonance imaging, an efficient reconstruction method named fSIDWT-SPIRiT is proposed based on shift-invariant discrete wavelets transform (SIDWT) and the iterative self-consistent parallel imaging reconstruction (SPIRiT) model. This method addresses the complex optimization problem containing data consistency term, calibration consistency term, and L1-norm regularization term. First, data consistency term and calibration consistency term are combined and processed, and then solved by a projected fast iterative shrinkage-thresholding algorithm to achieve fast parallel MRI reconstruction. Finally, simulation experiments are conducted using different human organ datasets. The results show that the proposed method is able to guarantee the image reconstruction quality with a faster convergence speed compared with other methods.

参考文献

[1] BROOKES M J, VRBA J, MULLINGER K J, et al. Source localisation in concurrent EEG/fMRI: Applications at 7T[J]. NeuroImage, 2009, 45(2): 440-452.
[2] 吴振洲, 常严, 徐雅洁, 等. 非笛卡尔并行磁共振成像重建技术研究新进展[J]. 仪器仪表学报, 2017, 38(8): 1996-2006.
[2] WU Zhenzhou, CHANG Yan, XU Yajie, et al. New research advances in non-Cartesian parallel MRI reconstruction[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1996-2006.
[3] HAMILTON J, FRANSON D, SEIBERLICH N. Recent advances in parallel imaging for MRI[J]. Progress in Nuclera Magnetic Resonance Spectroscopy, 2017, 101: 71-95.
[4] PRUESSMANN K P. Encoding and reconstruction in parallel MRI[J]. NMR in Biomedicine, 2006, 19(3): 288-299.
[5] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[6] ISLAM S R, MAITY S P, RAY A K. Compressed sensing regularized calibrationless parallel magnetic resonance imaging via deep learning[J]. Biomedical Signal Processing and Control, 2021, 66: 102399.
[7] LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-Space[J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471.
[8] VASANAWALA S, MURPHY M, ALLEY M, et al. Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients[C]//2011 IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Chicago, USA: IEEE, 2011: 1039-1043.
[9] 段继忠, 张立毅, 刘昱, 等. 基于自一致性的磁共振并行成像高效重构算法[J]. 天津大学学报(自然科学与工程技术版). 2014, 47(5): 414-419.
[9] DUAN Jizhong, ZHANG Liyi, LIU Yu, et al. Efficient reconstruction algorithm for parallel magnetic resonance imaging based on self-consistency[J]. Journal of Tianjin University (Science and Technology), 2014, 47(5): 414-419.
[10] PENG Z X, XU Z, HUANG J Z. RSPIRIT: Robust self-consistent parallel imaging reconstruction based on generalized Lasso[C]//2016 IEEE 13th International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE, 2016: 318-321.
[11] TING S T, AHMAD R, JIN N, et al. Fast Implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model[J]. Magnetic Resonance in Medicine, 2017, 77(4): 1505-1515.
[12] DUAN J Z, LIU Y, JING P G. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction[J]. Magnetic Resonance Imaging, 2018, 46: 81-89.
[13] GUO H Y, LIU P, WANG M, et al. TV-RSPIRiT: Total variation regularized based robust self-consistent parallel imaging reconstruction[C]//2019 International Conference on Medical Imaging Physics and Engineering. Shenzhen, China: IEEE, 2019: 1-4.
[14] ZHANG X L, GUO D, HUANG Y M, et al. Image reconstruction with low-rankness and self-consistency of k-space data in parallel MRI[J]. Medical Image Analysis, 2020, 63: 101687.
[15] ZHANG X L, LU H F, GUO D, et al. A guaranteed convergence analysis for the projected fast iterative soft-thresholding algorithm in parallel MRI[J]. Medical Image Analysis, 2021, 69: 101987.
[16] 薛方, 许朝萍, 刘耀飞, 等. 基于K空间采样的MRI重建算法研究[J]. 中国医学装备, 2021, 18(8): 1-4.
[16] XUE Fang, XU Chaoping, LIU Yaofei, et al. Research on MRI reconstruction algorithm based on K-space sampling[J]. China Medical Equipment, 2021, 18(8): 1-4.
[17] PAN T, DUAN J Z, WANG J F, et al. Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization[J]. Magnetic Resonance Imaging, 2022, 88: 62-75.
[18] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[19] LIU Y S, ZHAN Z F, CAI J F, et al. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2016, 35(9): 2130-2140.
[20] HU Y H, ZHANG X L, CHEN D C, et al. Spatiotemporal flexible sparse reconstruction for rapid dynamic contrast-enhanced MRI[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 229-243.
[21] SCHMIDT J F M, SANTELLI C, KOZERKE S. MR image reconstruction using block matching and adaptive kernel methods[J]. PLoS One, 2016, 11(4): e0153736.
[22] YING L, SHENG J H. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)[J]. Magnetic Resonance in Medicine, 2007, 57(6): 1196-1202.
[23] KNOLL F, ZBONTAR J, SRIRAM A, et al. fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology Artificial Intelligence, 2020, 2(1): e190007.
[24] ZBONTAR J, KNOLL F, SRIRAM A, et al. fastMRI: An open dataset and benchmarks for accelerated MRI[EB/OL]. (2019-12-11) [2022-06-17]. https://arxiv.org/abs/1811.08839.
文章导航

/