机械与动力工程

基于反步法的多移载工装协同作业编队控制策略

展开
  • 1.上海交通大学 上海市复杂薄板结构数字化制造重点实验室,上海 200240
    2.上海飞机制造有限公司航空制造技术研究所,上海 201324
刘禹铭(1997-),硕士生,从事传感器数据融合、多智能体协同作业研究.

收稿日期: 2021-08-20

  修回日期: 2021-10-08

  网络出版日期: 2023-01-13

基金资助

国家科技重大专项04专项子课题(2018ZX04006001-009)

Formation Control Strategy of Multiple Mobile Robots Cooperative Operation Based on Backstepping Method

Expand
  • 1. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201342, China

Received date: 2021-08-20

  Revised date: 2021-10-08

  Online published: 2023-01-13

摘要

研究了一种基于反步法的多移载工装协同作业控制策略,提出了基于改进人工势场法和纯轨迹跟踪法的期望运动状态规划方案,并根据自适应蒙特卡洛定位方法确定了实际运动状态的估计值,设计了反步法与虚拟领航跟随法结合的队列控制器.构建了基于机器人操作系统(ROS)环境的仿真模型,并开展仿真验证.结果表明:提出的队形误差计算方法能够提高误差估计精度,该编队控制策略能够使得队形误差在6.2 s内收敛,所设计的队形控制器能够满足多移载工装的作业要求.

本文引用格式

刘禹铭, 赵勇, 董正建, 王平, 姬煜琦 . 基于反步法的多移载工装协同作业编队控制策略[J]. 上海交通大学学报, 2023 , 57(1) : 103 -115 . DOI: 10.16183/j.cnki.jsjtu.2021.325

Abstract

A multi-shift tooling coordinated operation control strategy based on the backstepping method is investigated, a desired motion state planning scheme based on the improved artificial potential field method and the pure trajectory tracking method is proposed, and the actual situation is determined according to the adaptive Monte Carlo positioning method. For the estimated value of the motion state, a queue controller in combination the anti-stepping method and the virtual pilot following method is designed. A simulation model based on the robot operation system (ROS) environment is constructed, and the simulation is verified. The results show that the proposed formation error calculation method can improve the accuracy of error estimation. The formation control strategy can make the formation error converge within 6.2 s, and the designed formation controller can meet the operation requirements of multi-shift tooling.

参考文献

[1] 朱永国. 飞机大部件自动对接若干关键技术研究[D]. 南京: 南京航空航天大学, 2012.
[1] ZHU Yongguo. Research on some key techniques on aircraft large part automatic joining[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[2] CHEN X H, JIA Y M, MATSUNO F. Tracking control of nonholonomic mobile robots with velocity and acceleration constraints[C]// 2014 American Control Conference. Portland, USA: IEEE, 2014.
[3] 陈罡, 孟静, 高晓丁, 等. 基于Backstepping方法的移动机器人路径跟踪问题研究[J]. 测控技术, 2016, 35(8): 52-56.
[3] CHEN Gang, MENG Jing, GAO Xiaoding, et al. Research on path tracking problem of the mobile robot based on backstepping[J]. Measurement & Control Technology, 2016, 35(8): 52-56.
[4] TIAN X H, LIU H L, LIU H T. Robust finite-time consensus control for multi-agent systems with disturbances and unknown velocities[J]. ISA Transactions, 2018, 80: 73-80.
[5] LIU J H, WANG C L, CAI X. Global finite-time event-triggered consensus for a class of second-order multi-agent systems with the power of positive odd rational number and quantized control inputs[J]. Neurocomputing, 2019, 360: 254-264.
[6] XUE L X, WU S, XU Y Z, et al. A simulation-based multi-objective optimization design method for pump-driven electro-hydrostatic actuators[J]. Processes, 2019, 7(5): 274.
[7] SHAO J, XIE G, WANG L. Leader-following formation control of multiple mobile vehicles[J]. IET Control Theory & Applications, 2007, 1(2): 545-552.
[8] CHI T, ZHANG C J, SONG Y, et al. A strategy of multi-robot formation and obstacle avoidance in unknown environment[C]//2016 IEEE International Conference on Information and Automation. Ningbo, China: IEEE, 2016: 1455-1460.
[9] REN W, BEARD R W. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 73-82.
[10] ZHOU D J, WANG Z J, SCHWAGER M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures[J]. IEEE Transactions on Robotics, 2018, 34(4): 916-923.
[11] 王树凤, 张钧鑫, 张俊友. 基于人工势场和虚拟领航者的智能车辆编队控制[J]. 上海交通大学学报, 2020, 54(3): 305-311.
[11] WANG Shufeng, ZHANG Junxin, ZHANG Junyou. Intelligent vehicles formation control based on artificial potential field and virtual leader[J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 305-311.
[12] BENZERROUK A, ADOUANE L, MARTINET P. Stable navigation in formation for a multi-robot system based on a constrained virtual structure[J]. Robotics and Autonomous Systems, 2014, 62(12): 1806-1815.
[13] SARAVANAKUMAR S, ASOKAN T. Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space[J]. Intelligent Service Robotics, 2013, 6(4): 211-224.
[14] SINGH Y, SHARMA S, SUTTON R, et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 169: 187-201.
[15] LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127: 180-189.
[16] PANDEY P, SHUKLA A, TIWARI R. Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm[J]. International Journal of System Assurance Engineering and Management, 2018, 9(4): 836-852.
[17] 赵国旗, 杨明, 王冰, 等. 基于智能终端的移动机器人室内外无缝定位方法[J]. 上海交通大学学报, 2018, 52(1): 13-19.
[17] ZHAO Guoqi, YANG Ming, WANG Bing, et al. Indoor and outdoor seamless positioning method of mobile robot based on intelligent terminal[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 13-19.
[18] LI T, SUN S, SATTAR T P. Adapting sample size in particle filters through KLD-resampling[J]. Electronics Letters, 2013, 49(12): 740-742.
[19] ANILY S, FEDERGRUEN A. Simulated annealing methods with general acceptance probabilities[J]. Journal of applied probability, 1987, 24(3): 657-667.
[20] COULTER R C. Implementation of the pure pursuit path tracking algorithm[R]. Pittsburgh, USA: Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.
文章导航

/