寒冷地区空气源热泵辅助太阳能热水器供暖性能
收稿日期: 2022-01-05
修回日期: 2022-03-21
录用日期: 2022-05-05
网络出版日期: 2023-01-09
基金资助
国家重点研发计划项目(2019YFE0104900);国家重点研发计划项目(NRC:304191-ENERGIX);国家自然科学基金项目(51676094);甘肃省高等学校产业支撑项目(2021CYZC-33);兰州市人才创新创业项目(2017-RC-34);兰州市人才创新创业项目(2020-RC-126)
Performance of Solar Vacuum Tube Water Heater-Air Source Heat Pump System in Cold Area
Received date: 2022-01-05
Revised date: 2022-03-21
Accepted date: 2022-05-05
Online published: 2023-01-09
为提高太阳能热水器供暖的稳定性并大幅降低空气源热泵供暖的成本,提出空气源热泵辅助太阳能真空管热水器供暖构想,在甘肃省兰州市七里河区魏岭乡绿化村搭建空气源热泵辅助太阳能热水器供暖试验系统,详细研究了晴天、阴天及多云3种典型工况下系统的集热效率、热泵性能系数、系统太阳能保证率和系统能效比等.研究结果表明,晴天、阴天及多云工况下太阳能集热器有效得热量分别为75.5、4.1和49. 2 kW·h,集热效率分别为61.3%、26.6%、55.2%,太阳能热泵平均性能系数(COP)分别为3.6、3.4、3.6,空气源热泵平均COP分别为0、2.9、3.1,系统实际供热量分别为113.4、125.9和124.8 kW·h,系统耗电量分别为33.4、50.5和42.7 kW·h,系统太阳能保证率分别为66.6%、3.3%、39.4%,系统能效比分别为3.4,2.5,2.9.研究证明了太阳能真空管集热器-空气源热泵系统用于寒冷地区供暖的可行性,为寒冷地区供暖提供了一种新途径.
李金平, 董玉慧, 李彩军, 代静波, 牛轶男, NOVAKOVIC Vojislav . 寒冷地区空气源热泵辅助太阳能热水器供暖性能[J]. 上海交通大学学报, 2023 , 57(7) : 910 -920 . DOI: 10.16183/j.cnki.jsjtu.2022.005
To improve the stability of solar heating and reduce the high cost of air source heat pump heating, the idea of air source heat pump assisted solar stable heating was proposed. A solar vacuum tube water heater-air source heat pump system was developed and bulit in Weiling Township, Qilihe District, Lanzhou, Gansu Province. The performance of the system was compared to analyze the heat collection efficiency, heat pump coefficient of performance (COP), solar energy guarantee rate, and energy efficiency ratio under sunny, overcast, and cloudy conditions. The results show that the effective heat obtained by solar energy under sunny, overcast, and cloudy conditions is 75.5 kW·h, 4.1 kW·h, and 49.2 kW·h respectively, the system heat collection efficiency is 61.3%, 26.6%, and 55.2%, the average coefficient of performance(COP) of the solar heat pump is 3.6, 3.4, and 3.6, the average COP of the air source heat pump is 0, 2.9, and 3.1, the actual heat supply of the system is 113.4 kW·h, 125.9 kW·h, and 124.8 kW·h, the system power consumption is 33.4 kW·h, 50.5 kW·h, and 42.7 kW·h, the system solar energy guarantee rate is 66.6%, 3.3%, and 39.4%, and the system energy efficiency ratio is 3.4, 2.5, and 2.9 respectively. The research results prove that the solar vacuum tube collector-air source heat pump system is feasible for heating and provide a new way for heating in cold areas.
[1] | 习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 人民日报, 2020-12-13(1). |
[1] | XI Jinping. Building on past achievements and launching a new journey for global climate actions[N]. People’s Daily, 2020-12-13(1). |
[2] | LI Z S, ZHANG G Q, LI D M, et al. Application and development of solar energy in building industry and its prospects in China[J]. Energy Policy, 2007, 35(8): 4121-4127. |
[3] | KUMAR R, ROSEN M A. A critical review of photovoltaic-thermal solar collectors for air heating[J]. Applied Energy, 2011, 88(11): 3603-3614. |
[4] | CHEN X, YANG H X, LU L, et al. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating[J]. Energy, 2011, 36(8): 5292-5300. |
[5] | GRAM-HANSSEN K, CHRISTENSEN T H, PETERSEN P E. Air-to-air heat pumps in real-life use: Are potential savings achieved or are they transformed into increased comfort?[J]. Energy and Buildings, 2012, 53: 64-73. |
[6] | JIANG Y, GE T S, WANG R Z, et al. Experimental investigation on a novel temperature and humidity independent control air conditioning system-Part I: Cooling condition[J]. Applied Thermal Engineering, 2014, 73(1): 784-793. |
[7] | 李先庭, 宋鹏远, 石文星, 等. 实现冬夏季均高效运行的新型热泵系统: 柔性热泵系统[J]. 暖通空调, 2016, 46(12): 1-7. |
[7] | LI Xianting, SONG Pengyuan, SHI Wenxing, et al. Novel heat pump with high efficiency for the whole year: Flexible heat pump[J]. Heating Ventilating & Air Conditioning, 2016, 46(12): 1-7. |
[8] | KIM T, CHOI B I, HAN Y S, et al. A comparative investigation of solar-assisted heat pumps with solar thermal collectors for a hot water supply system[J]. Energy Conversion and Management, 2018, 172: 472-484. |
[9] | 周淑慧, 孙慧, 王晨龙, 等. 政策驱动下的中国北方农村地区清洁取暖方式[J]. 天然气工业, 2020, 40(3): 146-156. |
[9] | ZHOU Shuhui, SUN Hui, WANG Chenlong, et al. Policy-driven clean heating modes in the rural areas of the northern China[J]. Natural Gas Industry, 2020, 40(3): 146-156. |
[10] | YAO Y, JIANG Y Q, DENG S M, et al. A study on the performance of the airside heat exchanger under frosting in an air source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3745-3756. |
[11] | XU W, LIU C P, LI A G, et al. Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China[J]. Renewable Energy, 2020, 146: 2124-2133. |
[12] | DENG J, TIAN Z Y, FAN J H, et al. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing[J]. Energy and Buildings, 2016, 126: 2-13. |
[13] | 王海涛, 袁杰, 韦中师, 等. 低温辐射采暖毛细管空调系统太阳能贡献率研究[J]. 太阳能学报, 2019, 40(11): 3156-3163. |
[13] | WANG Haitao, YUAN Jie, WEI Zhongshi, et al. Study on contribution rate of solar energy in low temperature radiation heating capillary air conditioning system[J]. Acta Energiae Solaris Sinica, 2019, 40(11): 3156-3163. |
[14] | XU L N, LI M, ZHANG Y, et al. Applicability and comparison of solar-air source heat pump systems between cold and warm regions of plateau by transient simulation and experiment[J]. Building Simulation, 2021, 14(6): 1697-1708. |
[15] | SHAN M, YU T, YANG X. Assessment of an integrated active solar and air-source heat pump water heating system operated within a passive house in a cold climate zone[J]. Renewable Energy, 2016, 87: 1059-1066. |
[16] | LONG J B, XIA K M, ZHONG H H, et al. Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump[J]. Energy Conversion and Management, 2021, 229: 113624. |
[17] | WANG B Y, HE T, ZHANG X Y, et al. Investigation and experiment of coupling heating device based on solar energy and dual source heat pump[C]// Proceedings of the ISES Solar World Congress 2019. Freiburg, Germany: International Solar Energy Society, 2019. |
[18] | 王志峰,SUN Hongwei. 全玻璃真空管空气集热器管内流动与换热的数值模拟[J]. 太阳能学报, 2001, 22(1): 35-39. |
[18] | WANG Zhifeng, SUN Hongwei. A numerical simulation on heat transfer and fluid flow in a glass tube of all-glass evacuated tubular solar air heater[J]. Acta Energiae Solaris Sinica, 2001, 22(1): 35-39. |
[19] | MA B, SONG G J, SMARDON R C, et al. Diffusion of solar water heaters in regional China: Economic feasibility and policy effectiveness evaluation[J]. Energy Policy, 2014, 72: 23-34. |
[20] | 冯荣. 多因素耦合对户用热电气联供系统的影响机理研究[D]. 甘肃: 兰州理工大学, 2016. |
[20] | FENG Rong. Multi-factors coupling influence mechanism on the household combined system of heat, power and biogas[D]. Gansu: Lanzhou University of Technology, 2016. |
[21] | 张晓月. 北京农村地区太阳能空气源热泵双水箱复合供热系统性能模拟研究[D]. 北京: 北京建筑大学, 2020. |
[21] | ZHANG Xiaoyue. Simulation study on performance of solar air source heat pump dual water tank composite heating system in rural areas of Beijing[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. |
[22] | 甘肃省发展和改革委员会. 关于甘肃电网 2017-2019 年输配电价有关事项的通知[EB/OL].(2017-10-11)[2022-01-05]. http://www.china-nengyuan.com/exhibition/exhibition_news_115242.html. |
[22] | Gansu Provincial Development and Reform Commission. Notice on matters related to transmission and distribution price of gansu power grid from 2017 to 2019[EB/OL].(2017-10-11)[2022-01-05]. http://www.china-nengyuan.com/exhibition/exhibition_news_115242.html. |
/
〈 |
|
〉 |