生物医学工程

定制式增材制造膝关节矫形器间室减荷效果的有限元分析

展开
  • 1.上海交通大学医学院附属第九人民医院 骨科, 上海 200011
    2.上海交通大学 生物医学工程学院, 上海 200030
    3.徐州医科大学 医学影像学院, 江苏 徐州 221004
    4.上海体育学院 运动科学学院, 上海 200438
    5.潍坊医学院 康复医学院, 山东 潍坊 261053
许苑晶(1993-),中级工程师,从事3D打印医疗器械研发与注册研究.

收稿日期: 2022-06-06

  修回日期: 2022-07-01

  录用日期: 2022-07-12

  网络出版日期: 2023-01-06

基金资助

国家重点研发计划(2020YFB1711505);重点专项,上海市科委项目(19441917500);重点专项,上海市科委项目(19441908700)

Finite Element Analysis of Decompression Effect of Custom Additively Manufactured Knee Orthosis Compartments

Expand
  • 1. Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
    3. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
    4. School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
    5. Department of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, Shandong, China

Received date: 2022-06-06

  Revised date: 2022-07-01

  Accepted date: 2022-07-12

  Online published: 2023-01-06

摘要

通过构建膝关节与定制式增材制造膝关节矫形器有限元模型,模拟膝骨关节炎(KOA)患者佩戴矫形器前后的膝关节生物力学变化,验证矫形器的间室减荷效果,针对矫形器治疗效果开展定量化研究,可用于膝关节矫形器的临床疗效评价.实验经过上海交通大学医学院附属第九人民医院伦理委员会审批通过,招募一名膝骨关节炎的女性,对其膝关节进行光学体表及CT扫描,根据单侧减荷原理设计定制式增材制造膝关节矫形器,通过网格划分、材料赋值、边界设置等步骤,利用ANSYS等软件构建包括膝关节与定制式增材制造膝关节矫形器有限元模型,沿下肢负重轴方向对膝关节施加 1 100 N的压缩载荷,进行仿真及应力分析,研究定制式增材制造膝关节矫形器对膝关节间室的减荷效果.针对KOA特性进行有限元分析,验证软骨、韧带及下肢皮肤对膝关节承载能力的影响.相较于未佩戴任何矫形器情况,佩戴定制式膝关节矫形器后,膝关节内翻角度减少、内侧压力向外侧转移且内侧间室压力明显降低.定制式增材制造膝关节矫形器可降低早中期内侧间室型膝骨关节炎患者在步行过程中膝关节内侧间室所产生的压力,减荷效果显著.

本文引用格式

许苑晶, 高海峰, 吴云成, 柳毅浩, 张子砚, 黄承兰, 王赞博, 刘同有, 王彩萍, 缪伟强, 王金武 . 定制式增材制造膝关节矫形器间室减荷效果的有限元分析[J]. 上海交通大学学报, 2023 , 57(5) : 560 -569 . DOI: 10.16183/j.cnki.jsjtu.2022.194

Abstract

To simulate the biomechanical changes of knee joint before and after wearing the orthosis in patients with knee osteoarthritis (KOA) by constructing a finite element model of the knee joint and a customized additively manufactured knee orthosis, so as to verify the decompression effect of the orthosis, and aimed at orthopaedics, a quantitative research on the therapeutic effect of knee orthosis was conducted to evaluate the clinical efficacy of knee orthosis.This experiment was approved by the Ethics Committee of the Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. A woman with knee osteoarthritis was recruited, and the knee joint was subjected to optical body surface and CT scans. A custom-made additively manufactured knee orthosis was designed according to the principle of unilateral decompression. After boundary setting and other steps, software such as ANSYS was used to build a finite element model of the knee joint and a customized additively manufactured knee joint orthosis. By applying a compressive load of 1100 N to the knee joint along the direction of the lower limb load-bearing axis, a simulation and stress analysis was performed to study the deloading effect of a custom additively manufactured knee orthosis on the knee compartment. A finite element analysis of KOA characteristics was conducted for verification, considering the influence of cartilage, ligament, and lower limb skin on the bearing capacity of the knee joint. Compared with the case without wearing any orthosis, after wearing the customized knee orthosis, the varus angle of the knee joint was reduced, the medial pressure of the knee joint was shifted to the lateral side, and the pressure of the medial compartment of the knee joint was significantly reduced. The custom additively manufactured knee orthosis can reduce the pressure generated by the medial compartment of the knee joint during walking in patients with early and mid-stage medial compartment knee osteoarthritis, and the load reduction effect is significant.

参考文献

[1] 郑创史, 邱钊禹. 超声波检查在膝骨关节炎早期诊断中的应用价值分析[J]. 内科, 2017, 12(5): 654-656.
[1] ZHENG Chuangshi, QIU Zhaoyu. Application value analysis of ultrasonic examination in early diagnosis of knee osteoarthritis[J]. Internal Medicine, 2017, 12(5): 654-656.
[2] THOMAS K N, JAIN N, MOHINDRA N, et al. MRI and sonography of the knee in acute reactive arthritis[J]. JCR: Journal of Clinical Rheumatology, 2021, 28(2): e511-e516.
[3] WANG H, MA B A. Healthcare and scientific treatment of knee osteoarthritis[J]. Journal of Healthcare Engineering, 2022, 2022: 1-7.
[4] SCHAD P, WOLLENWEBER M, THüRING J, et al. Magnetic resonance imaging of human knee joint functionality under variable compressive in-situ loading and axis alignment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110: 103890.
[5] SHU L M, SATO T, HUA X J, et al. Comparison of kinematics and contact mechanics in normal knee and total knee replacements: A computational investigation[J]. Annals of Biomedical Engineering, 2021, 49(9): 2491-2502.
[6] WANG J Y, QI Y S, BAO H R C, et al. The effects of different repair methods for a posterior root tear of the lateral meniscus on the biomechanics of the knee: A finite element analysis[J]. Journal of Orthopaedic Surgery and Research, 2021, 16(1): 296-304.
[7] 高辉, 王晨艳, 李志, 等. 不同屈曲状态下固定轴和移动轴膝关节胫-股关节的生物力学变化[J]. 太原理工大学学报, 2021, 52(1): 144-150.
[7] GAO Hui, WANG Chenyan, LI Zhi, et al. Biomechanical changes of the tibial-femoral joint of the knee joint with fixed and moving axes under different flexion states[J]. Journal of Taiyuan University of Technology, 2021, 52(1): 144-150.
[8] 李钟鑫, 刘璐, 高丽兰, 等. 人体全膝关节精细有限元模型建立及有效性验证[J]. 生物医学工程与临床, 2020, 24(5): 501-507.
[8] LI Zhongxin, LIU Lu, GAO Lilan, et al. Establishment and validation of precise finite element model of human total knee joint[J]. Biomedical Engineering and Clinical Medicine, 2020, 24(5): 501-507.
[9] FUKAYA T, MUTSUZAKI H, AOYAMA T, et al. A simulation case study of knee joint compressive stress during the stance phase in severe knee osteoarthritis using finite element method[J]. Medicina, 2021, 57(6): 550.
[10] PANWAR J S, RAFEEK T, SRIRAM R, et al. Model for in-vivo estimation of stiffness of tibiofemoral joint using MR imaging and FEM analysis[J]. Journal of Translational Medicine, 2021, 19(1): 310.
[11] ZHANG K J, LI L, YANG L F, et al. Effect of degenerative and radial tears of the meniscus and resultant meniscectomy on the knee joint: A finite element analysis[J]. Journal of Orthopaedic Translation, 2019, 18: 20-31.
[12] HE X L, TANEJA K, CHEN J S, et al. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles[J]. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38(4): e3571.
[13] KONG A P, ROBBINS R M, STENSBY J D, et al. The lateral knee radiograph: A detailed review[J]. The Journal of Knee Surgery, 2022, 35(5): 482-490.
[14] KOH Y G, LEE J A, KIM P S, et al. Effects of the material properties of a focal knee articular prosthetic on the human knee joint using computational simulation[J]. The Knee, 2020, 27(5): 1484-1491.
[15] PIERRAT B, MOLIMARD J, CALMELS P, et al. Efficiency and comfort of knee braces: A parametric study based on computational modelling[EB/OL]. (2014-09-19) [2022-06-05]. https://arxiv.org/abs/1409.5756.
[16] 赵春霞, 刘婷, 罗云. 膝关节整体免荷矫形器的设计与评价[J]. 医用生物力学, 2015, 30(6): 564-568.
[16] ZHAO Chunxia, LIU Ting, LUO Yun. Design and evaluation of an overall unloading knee brace[J]. Journal of Medical Biomechanics, 2015, 30(6): 564-568.
[17] PARK S, LEE S, YOON J, et al. Finite element analysis of knee and ankle joint during gait based on motion analysis[J]. Medical Engineering & Physics, 2019, 63: 33-41.
[18] 陈彦飞, 鲁超, 赵勇, 等. 基于CT影像动态膝关节有限元模型的构建及仿真力学分析[J]. 中国骨伤, 2020, 33(5): 479-484.
[18] CHEN Yanfei, LU Chao, ZHAO Yong, et al. Construction and simulation mechanical analysis of dynamic knee joint finite element model based on CT image[J]. China Journal of Orthopaedics and Traumatology, 2020, 33(5): 479-484.
[19] 张刘会, 刘丹平. 膝关节三维有限元模型建立和验证及模拟后交叉韧带重建术[J]. 生物医学工程与临床, 2020, 24(5): 508-513.
[19] ZHANG Liuhui, LIU Danping. Construction and verification of three-dimensional finite element knee joint model and simulation scheme of posterior cruciate ligament reconstruction[J]. Biomedical Engineering and Clinical Medicine, 2020, 24(5): 508-513.
[20] ASGARI M, ALI KOUCHAKZADEH M. An equivalent von Mises stress and corresponding equivalent plastic strain for elastic-plastic ordinary peridynamics[J]. Meccanica, 2019, 54(7): 1001-1014.
[21] THIENKAROCHANAKUL K, JAVADI A, AKRAMI M, et al. Stress distribution of the tibiofemoral joint in a healthy versus osteoarthritis knee model using image-based three-dimensional finite element analysis[J]. Journal of Medical and Biological Engineering, 2020, 40: 409-418.
[22] 郝瑞胡, 郭林, 李丽丽, 等. 全膝关节置换术治疗膝关节骨性关节炎的临床观察[J]. 中国骨与关节损伤杂志, 2014, 29(6): 544-546.
[22] HAO Ruihu, GUO Lin, LI Lili, et al. Observation of total knee arthroplasty in treatment of knee osteoarthritis[J]. Chinese Journal of Bone and Joint Injury, 2014, 29(6): 544-546.
[23] ZHANG Z Q, LIU C, LI Z W, et al. Residual mild varus alignment and neutral mechanical alignment have similar outcome after total knee arthroplasty for varus osteoarthritis in five-year follow-up[J]. The Journal of Knee Surgery, 2020, 33(2): 200-205.
[24] 李伟, 方学伟, 周游, 等. 基于MRI技术全膝关节置换术中个体化导航模板的基础研究[J]. 中华关节外科杂志(电子版), 2015, 9(1): 54-58.
[24] LI Wei, FANG Xuewei, ZHOU You, et al. Study on individual navigation templates based on MRI technology in total knee arthroplasty[J]. Chinese Journal of Joint Surgery (Electronic Edition), 2015, 9(1): 54-58.
[25] 张晓峰. 一种基于圆柱拟合的下肢胫骨机械轴线确定方法: CN 109512513 A[P]. 2019-03-26 [2022-06-05].
[25] ZHANG Xiaofeng. Cylinder fitting based lower limb tibia mechanical axis determination method: CN 109512513 A[P]. 2019-03-26 [2022-06-05].
[26] 陈军. 膝骨性关节炎治疗进展[J]. 饮食保健, 2021(30): 295-296.
[26] CHEN Jun. Progress in treatment of knee osteoarthritis[J]. Diet Health, 2021(30): 295-296.
[27] BAGHAEI ROODSARI R, ESTEKI A, AMINIAN G, et al. The effect of orthotic devices on knee adduction moment, pain and function in medial compartment knee osteoarthritis: A literature review[J]. Disability and Rehabilitation: Assistive Technology, 2017, 12(5): 441-449.
[28] 张旻, 陈博, 江澜, 等. 两种不同矫形器对早期内侧间室膝关节骨性关节炎步态的影响[J]. 中国康复医学杂志, 2014, 29(1): 26-30.
[28] ZHANG Min, CHEN Bo, JIANG Lan, et al. Effects of different orthoses on the gait in early stage medial compartment knee osteoarthritis[J]. Chinese Journal of Rehabilitation Medicine, 2014, 29(1): 26-30.
[29] KATSUBE G, QI S, ITAMI T, et al. Ankle foot orthosis that prevents slippage for tibial rotation in knee osteoarthritis patients[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Mexico: IEEE, 2021: 4728-4731.
[30] 刘鑫, 胡亚飞, 宋作新. 免荷膝关节矫形器干预对膝关节骨性关节炎疼痛及行走能力的影响[J]. 中国康复医学杂志, 2018, 33(8): 973-975.
[30] LIU Xin, HU Yafei, SONG Zuoxin. Effect of free knee orthosis intervention on pain and walking ability of knee osteoarthritis[J]. Chinese Journal of Rehabilitation Medicine, 2018, 33(8): 973-975.
[31] COOPER R J, WILCOX R K, JONES A C. Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges[J]. Medical Engineering & Physics, 2019, 74: 1-12.
[32] HARIS A, BENG CHYE TAN V. Stress response envelopes of intact tibiofemoral joint and knee osteoarthritis[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234(10): 1151-1161.
[33] MATSUMOTO T, HASHIMURA M, TAKAYAMA K, et al. A radiographic analysis of alignment of the lower extremities-initiation and progression of varus-type knee osteoarthritis[J]. Osteoarthritis and Cartilage, 2015, 23(2): 217-223.
[34] WANG S P, WU P K, LEE C H, et al. Association of osteoporosis and varus inclination of the tibial plateau in postmenopausal women with advanced osteoarthritis of the knee[J]. Bmc Musculoskeletal Disorders, 2021, 22(1): 1-8.
[35] 万超, 郝智秀, 温诗铸. 前交叉韧带力学特性差异对膝关节有限元仿真结果的影响[J]. 医用生物力学, 2012, 27(4): 375-380.
[35] WAN Chao, HAO Zhixiu, WEN Shizhu. Influence of various mechanical properties of anterior cruciate ligament on finite element simulation of knee joint[J]. Journal of Medical Biomechanics, 2012, 27(4): 375-380.
[36] DAI K R, XU F. Medical application of 3D printing: A powerful tool for personalised treatment[J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(3): 257-258.
文章导航

/