带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化
收稿日期: 2021-12-03
修回日期: 2021-12-31
录用日期: 2022-01-19
网络出版日期: 2023-01-06
基金资助
国家自然科学基金(52122110);国家自然科学基金(42076210);国家自然科学基金(51879160);上海市科委重大研究计划(2019-01-07-00-02-E00066);上海市曙光计划(19SG10);上海交通大学深蓝计划(SL2020PT201);上海交通大学深蓝计划(SL2021PT302);湖南省自然科学基金(2021JJ50027)
Aerodynamic Performance Optimization of MW-Level Large Vertical Axis Wind Turbine with Trailing Edge Flaps
Received date: 2021-12-03
Revised date: 2021-12-31
Accepted date: 2022-01-19
Online published: 2023-01-06
垂直轴风力机较低的风能利用率是限制其工程化应用的主要原因,为了提高其风能转化率、降低气动荷载,针对叶尖速比为2.65的中等值条件下带尾缘襟翼的大型垂直轴风力机提出了一种改进的气动性能优化模型,采用SST k-ω湍流模型进行数值模拟.研究结果表明:与原始模型相比,考虑桨距和襟翼协同运动下优化模型的功率系数可提高12.2%;此外,桨距和襟翼的协同运动可以显著减少作用在风力机整机上的推力和侧向力,与原始模型相比分别减少了12.4%和7.5%,推力和侧向力的波动幅值也要明显低于原始模型,这将有助于降低作用在风力机整机上的疲劳荷载.该模型有望在兆瓦级大型垂直轴风力机上得到应用.
陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄 . 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023 , 57(6) : 642 -652 . DOI: 10.16183/j.cnki.jsjtu.2021.488
Low power efficiency is a critical factor that restricts the engineering application of the vertical axis wind turbine (VAWT). In order to improve the efficiency of VAWT and reduce aerodynamic load, an improved aerodynamic performance optimization model for a large VAWT with trailing edge flaps at a medium tip speed ratio (TSR=2.65) is proposed. A numerical simulation is conducted using the SST k-ω turbulence model. The results indicate that compared with the base model, the power coefficient of the model under the synergic motion of pitch and flap can be increased by 12.2%. In addition, the synergic motion of pitch and flap can significantly reduce the thrust and lateral force on the VAWT, which are reduced by 12.4% and 7.5% respectively compared with the base model. The load fluctuation of thrust and lateral force is also significantly lower than that of the base model, which is helpful to reduce the fatigue load on wind turbine. This model is expected to be applied to MW-level VAWT.
[1] | MITTAL P, MITRA K. Determining layout of a wind farm with optimal number of turbines: A decomposition based approach[J]. Journal of Cleaner Production, 2018, 202: 342-359. |
[2] | BRETON S P, MOE G. Status, plans and technologies for offshore wind turbines in Europe and North America[J]. Renewable Energy, 2009, 34(3): 646-654. |
[3] | THé J, YU H S. A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods[J]. Energy, 2017, 138: 257-289. |
[4] | HAND B, CASHMAN A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100646. |
[5] | HAND B, KELLY G, CASHMAN A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110699. |
[6] | OTTERMO F, BERNHOFF H. An upper size of vertical axis wind turbines[J]. Wind Energy, 2014, 17(10): 1623-1629. |
[7] | 郝文星, 李春, 刘青松, 等. 风力机叶片气动降载与流动分离控制技术综述[J]. 热能动力工程, 2019, 34(9): 1-13. |
[7] | HAO Wenxing, LI Chun, LIU Qingsong, et al. Review of aerodynamic load reduction and flow separation control technology for wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 1-13. |
[8] | REZAEIHA A, MONTAZERI H, BLOCKEN B. Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades[J]. Energy, 2018, 165: 1129-1148. |
[9] | CHEN B, SU S S, VIOLA I M, et al. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades[J]. Ocean Engineering, 2018, 155: 75-87. |
[10] | ABDALRAHMAN G, MELEK W, LIEN F S. Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)[J]. Renewable Energy, 2017, 114: 1353-1362. |
[11] | LI C, XIAO Y Q, XU Y L, et al. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations[J]. Applied Energy, 2018, 212: 1107-1125. |
[12] | 季康, 李春, 阳君, 等. 尾缘襟翼动态气动特性与控制策略研究[J]. 太阳能学报, 2017, 38(7): 1912-1920. |
[12] | JI Kang, LI Chun, YANG Jun, et al. Research on dynamic aerodynamic performance and flow control of airfoil with flap[J]. Acta Energiae Solaris Sinica, 2017, 38(7): 1912-1920. |
[13] | 叶舟, 宋建业, 刘天亮, 等. 基于多岛遗传算法的襟翼优化[J]. 热能动力工程, 2017, 32 (Sup.1): 80-85. |
[13] | YE Zhou, SONG Jianye, LIU Tianliang, et al. Optimization of flap based on the multi-island genetic algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32 (Sup.1): 80-85. |
[14] | RACITI CASTELLI M, ARDIZZON G, BATTISTI L, et al. Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada: ASME, 2012: 409-418. |
[15] | PARASCHIVOIU I. Wind turbine design with emphasis on Darrieus concept[M]. Montréal: Presses inter Polytechnique, 2002. |
[16] | BACHANT P, WOSNIK M, GUNAWAN B, et al. Experimental study of a reference model vertical-axis cross-flow turbine[J]. PLoS One, 2016, 11(9): e0163799. |
[17] | SU J, CHEN Y R, HAN Z L, et al. Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines[J]. Applied Energy, 2020, 260: 114326. |
[18] | SOBHANI E, GHAFFARI M, MAGHREBI M J. Numerical investigation of dimple effects on darrieus vertical axis wind turbine[J]. Energy, 2017, 133: 231-241. |
[19] | SAGHARICHI A, ZAMANI M, GHASEMI A. Effect of solidity on the performance of variable-pitch vertical axis wind turbine[J]. Energy, 2018, 161: 753-775. |
[20] | PATANKAR S V. Numerical heat transfer and fluid flow[M]. Boca Raton: CRC Press, 2018. |
[21] | SU J, LEI H, ZHOU D, et al. Aerodynamic noise assessment for a vertical axis wind turbine using improved delayed detached eddy simulation[J]. Renewable Energy, 2019, 141: 559-569. |
[22] | LEI H, ZHOU D, BAO Y, et al. Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine[J]. Energy Conversion and Management, 2017, 133: 235-248. |
[23] | ARMSTRONG S, FIEDLER A, TULLIS S. Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences[J]. Renewable Energy, 2012, 41: 13-22. |
[24] | ROH S C, KANG S H. Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine[J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3299-3307. |
[25] | CHENG Z S, MADSEN H A, GAO Z, et al. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method[J]. Energy Procedia, 2016, 94: 531-543. |
[26] | SAGHARICHI A, MAGHREBI M J, ARABGOLARCHEH A. Variable pitch blades: An approach for improving performance of Darrieus wind turbine[J]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053305. |
/
〈 |
|
〉 |