直流配网多滤波器交互影响机理分析
收稿日期: 2021-10-22
修回日期: 2021-12-22
录用日期: 2022-01-06
网络出版日期: 2023-01-06
基金资助
国家自然科学基金(51807117);上海市教委科研创新重大项目(2019-01-07-00-02-E00044)
Interaction Mechanism for Multiple Active Power Filters in DC Distribution Networks
Received date: 2021-10-22
Revised date: 2021-12-22
Accepted date: 2022-01-06
Online published: 2023-01-06
直流配网是配电系统的主要发展方向,受非线性设备、不平衡负载等因素影响,系统中极易产生二次谐波,严重威胁系统运行稳定性与用电设备安全性.在系统规模较大的直流配网中,多有源滤波器协同滤波是治理二次谐波的方法之一,但由于滤波器之间存在耦合干扰,滤波性能与效果差别较大.建立多滤波器诺顿等效并网模型,基于相对增益矩阵理论提出了多滤波器交互影响机理分析方法,构建了滤波器输出电流变化量与谐波源电流变化量矩阵关系,分析了直流配网线路参数和滤波器控制参数对滤波效果的影响.利用PSCAD/EMTDC软件建立含多直流滤波器的直流配电网模型,在不同场景下验证滤波器交互影响分析的合理性;并利用RT-LAB软件搭建半实物仿真模型,进一步验证了方法的有效性.
王昊, 黄文焘, 邰能灵, 余墨多, 孙国亮 . 直流配网多滤波器交互影响机理分析[J]. 上海交通大学学报, 2023 , 57(4) : 393 -402 . DOI: 10.16183/j.cnki.jsjtu.2021.423
DC distribution network is the main development direction of the power distribution system. Due to the influence of electronic equipment and other factors, the system is very easy to produce second harmonics, which seriously affects the stability of the system and the safety of electrical equipment. Multi-filter collaborative filtering in DC distribution network has become one of the methods to control the second harmonic. However, due to the coupling interference between the filters, the filtering effect is affected by multiple factors. This paper establishes a Norton equivalent grid-connected model of multiple filters and proposes a method for analyzing the interaction mechanism of multiple filters based on the relative gain matrix theory. This method establishes the matrix relationship between the change in the output current of the filter and the change in the harmonic source current and analyzes the influence of the grid parameters and controller parameters in the multi-filter grid-connected system on the filtering effect of the filter, and proposes a reasonable parameter selection method. Finally, this paper establishes a DC distribution network model with multiple DC filters in PSCAD/EMTDC, and simulates the parameters affecting the filtering effect and verifies the rationality of the analysis in the scenario of multiple harmonic sources. In addition, it builds a semi-physical simulation model in RT-LAB to further verify the effectiveness of the method.
[1] | 刘英培, 周素文, 梁海平, 等. 光储直流配电网灵活虚拟惯性控制策略[J]. 电力自动化设备, 2021, 41(5): 107-113. |
[1] | LIU Yingpei, ZHOU Suwen, LIANG Haiping, et al. Flexible virtual inertial control strategy for optical storage DC distribution network[J]. Electric Power Automation Equipment, 2021, 41(5): 107-113. |
[2] | 戴志辉, 葛红波, 严思齐, 等. 柔性直流配电网故障分析[J]. 电工技术学报, 2018, 33(8): 1863-1874. |
[2] | DAI Zhihui, GE Hongbo, YAN Siqi, et al. Failure analysis of flexible DC distribution network[J]. Journal of Electrotechnical Engineering, 2018, 33(8): 1863-1874. |
[3] | LIU W. Power quality assessment in shipboard microgrids under unbalanced and harmonic AC bus voltage[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 765-775. |
[4] | 徐辰华, 伍建松, 刘斌, 等. 直流侧电压高二次纹波率条件下的单相逆变器谐波削弱调制[J]. 电力系统自动化, 2020, 44(3): 176-184. |
[4] | XU Chenhua, WU Jiansong, LIU Bin, et al. Single-phase inverter harmonic attenuation modulation under the condition of high secondary ripple rate of DC side voltage[J]. Automation of Electric Power Systems, 2020, 44(3): 176-184. |
[5] | 李占凯, 岳怀瑜, 张福民, 等. 混合微电网虚拟联合谐波抑制器控制策略[J]. 高电压技术, 2020, 46(7): 2307-2315. |
[5] | LI Zhankai, YUE Huaiyu, ZHANG Fumin, et al. Control strategy of virtual joint harmonic suppressor for hybrid microgrid[J]. High Voltage Technology, 2020, 46(7): 2307-2315. |
[6] | 张力, 陈乔夫, 刘健犇, 等. 基于测量值的无源滤波器设计新方法及其应用[J]. 电力自动化设备, 2011, 31(9): 69-74. |
[6] | ZHANG Li, CHEN Qiaofu, LIU Jianben, et al. New method and application of passive filter design based on measured value[J]. Electric Power Automation Equipment, 2011, 31(9): 69-74. |
[7] | 李双健, 贾秀芳. 混合型有源滤波器接入LCC-HVDC后的谐振分析及抑制方法[J]. 高电压技术, 2021, 47(7): 2480-2490. |
[7] | LI Shuangjian, JIA Xiufang. Resonance analysis and suppression method of hybrid active filter connected to LCC-HVDC[J]. High Voltage Technology, 2021, 47(7): 2480-2490. |
[8] | XUE Y, ZHANG X P, YANG C. AC filterless flexible LCC HVDC with reduced voltage rating of controllable capacitors[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5507-5518. |
[9] | YANG Y, DAVARI P, ZARE F, et al. A DC-link modulation scheme with phase-shifted current control for harmonic cancellations in multidrive applications[J]. IEEE Transactions on Power Electronics, 2016, 30(3): 1837-1840. |
[10] | ZHU G, TAN S, CHEN Y, et al. Mitigation of low-frequency current ripple in fuel-cell inverter systems through waveform control[J]. IEEE Transactions on Power Electronics, 2013, 28(2): 779-792. |
[11] | CAI W, JIANG L, LIU B, et al. A power decoupling method based on four-switch three-port DC-DC-AC converter in DC microgrid[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 336-343. |
[12] | 朱银玉. 航空直流有源滤波器的关键技术研究[D]. 南京: 南京航空航天大学, 2010. |
[12] | ZHU Yinyu. Research on the key technology of aviation DC active filter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. |
[13] | 郭春林, 徐轩, 张琛亮, 等. 含滤波器的多换流站谐波阻抗模型与谐波交互影响研究[J]. 电力自动化设备, 2020, 40(10): 187-193. |
[13] | GUO Chunlin, XU Xuan, ZHANG Chenliang, et al. Research on harmonic impedance model and harmonic interaction of multi-converter stations with filters[J]. Electric Power Automation Equipment, 2020, 40(10): 187-193. |
[14] | 杨光亮, 邰能灵, 郑晓冬, 等. 多馈入直流输电系统谐波交互影响分析[J]. 电力自动化设备, 2016, 36(1): 105-110. |
[14] | YANG Guangliang, TAI Nengling, ZHENG Xiao-dong, et al. Harmonic interaction analysis of multi-infeed DC transmission system[J]. Electric Power Automation Equipment, 2016, 36(1): 105-110. |
[15] | DANG P, ELLINGER T, PETZOLDT J. Dynamic interaction analysis of APF systems[J]. IEEE Transactions on Industrial Electronics, 2014, 61(9): 4467-4473. |
[16] | 王弈赫, 张佰富, 韩肖清, 等. 基于频域RGA原理的多并联三相逆变器间交互影响分析[J]. 高电压技术, 2021, 47(10): 3766-3778. |
[16] | WANG Yihe, ZHANG Baifu, HAN Xiaoqing, et al. Interaction analysis of multi-parallel three-phase inverters based on frequency domain RGA principle[J]. High Voltage Technology, 2021, 47(10): 3766-3778. |
[17] | 陈继开, 马修伟, 李江, 等. 并联双APF交互影响分析[J]. 电网技术, 2017, 41(3): 956-961. |
[17] | CHEN Jikai, MA Xiuwei, LI Jiang, et al. Analysis of the interaction of parallel dual APFs[J]. Power System Technology, 2017, 41(3): 956-961. |
/
〈 |
|
〉 |