连续康复训练动作分割与评估
收稿日期: 2021-11-16
修回日期: 2022-01-23
录用日期: 2022-02-14
网络出版日期: 2022-12-07
基金资助
医工交叉研究基金(YG2019QNA11)
Segmentation and Evaluation of Continuous Rehabilitation Exercises
Received date: 2021-11-16
Revised date: 2022-01-23
Accepted date: 2022-02-14
Online published: 2022-12-07
为提高对康复训练动作反馈的准确性和客观性以及康复患者在康复训练中的积极性和自律性,建立一种能够处理人体连续康复训练动作数据的动作评估方法.首先,提出一种基于高斯混合模型的动作分割方法,从同一动作的连续重复运动序列中提取单次动作数据.其次,根据相关先验知识,提出结合显著运动特征动态时间规整距离评估与高斯混合模型似然评估的多特征融合动作评估方法,从康复训练动作的整体动作与局部关节信息两方面进行动作评估.结果表明:动作分割方法能够很好地分割连续重复动作的运动数据,在数据集上分割动作的正确率达到95%以上;多特征融合动作评估方法有效地提高健康样本与康复患者样本之间动作评估的区分度,使得健康样本动作分数在0~1的评分范围内主要分布在0.93~0.94的得分区间,患者样本则主要分布在0.81~0.89的得分区间.
胡铭轩, 乔钧, 张执南 . 连续康复训练动作分割与评估[J]. 上海交通大学学报, 2023 , 57(5) : 533 -544 . DOI: 10.16183/j.cnki.jsjtu.2021.458
To provide an accurate and objective feedback on rehabilitation training movements and to improve the motivation of rehabilitation patients in rehabilitation training, a motion evaluation method capable of processing continuous human rehabilitation training movement data is proposed. First, a motion segmentation method based on the Gaussian mixture model (GMM) is developed to extract single motion repetition from continuous repetitive motion sequences of the same motion. Then, based on relevant a priori knowledge, a multi-feature fusion motion evaluation method combining significant motion feature dynamic time warping (DTW) distance evluation and Gaussian mixture model likelihood evaluation is proposed to perform motion evaluation in both the overall motion feature and local joint information of rehabilitation exercises. The results show that the motion segmentation method can segment the motion data of continuous repetitive motions well, and the correct rate of segmented motions on the dataset reaches more than 95%. The multi-feature fusion motion evaluation method effectively improves the differentiation of motion evaluation between healthy samples and rehabilitation patient samples, so that the motion scores of healthy samples are mainly distributed in the range of 0.93—0.94 on a scale of 0—1, while the motion scores of patient samples are mainly distributed in the range of 0.81—0.89.
[1] | 崔迪. 虚拟环境下远程自适应康复训练系统与评估模型研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2017. |
[1] | CUI Di. Research on adaptability and evaluation model of remote rehabilitation training system in virtual environment[D]. Ningbo: Ningbo Institute of Material Technology, Chinese Academy of Sciences, 2017. |
[2] | LUNENBURGER L, WELLNER M, BANZ R, et al. Virtual Performance-Enhancing Reality (ViPER) for robot-assisted gait training[C]//2006 International Workshop on Virtual Rehabilitation. New York, USA: IEEE, 2006: 174-177. |
[3] | 耿松松. 中国残疾人康复现状与问题研究[D]. 兰州: 兰州大学, 2013. |
[3] | GENG Songsong. Rehabilitation and problems on disabled in China[D]. Lanzhou: Lanzhou University, 2013. |
[4] | KOMATIREDDY R, CHOKSHI A, BASNETT J, et al. Quality and quantity of rehabilitation exercises delivered by a 3-D motion controlled camera: A pilot study[J]. International Journal of Physical Medicine & Rehabilitation, 2014, 2(4): 214. |
[5] | JOHANSSON B B. Current trends in stroke rehabilitation. A review with focus on brain plasticity[J]. Acta Neurologica Scandinavica, 2011, 123(3): 147-159. |
[6] | TEYHEN D S, SHAFFER S W, LORENSON C L, et al. The functional movement screen: A reliability study[J]. The Journal of Orthopaedic & Sports Physical Therapy, 2012, 42(6): 530-540. |
[7] | DEAKIN A, HILL H, POMEROY V M. Rough guide to the Fugl-Meyer assessment: Upper limb section[J]. Physiotherapy, 2003, 89(12): 751-763. |
[8] | ZHANG Z, FANG Q, GU X D. Objective assessment of upper-limb mobility for poststroke rehabilitation[J]. IEEE Transactions on Bio-medical Engineering, 2016, 63(4): 859-868. |
[9] | 汤翾, 黄襄念, 周杉. 基于Kinect的肩周炎康复训练动作识别系统研究[J]. 现代计算机(专业版), 2014(23): 53-55. |
[9] | TANG Xuan, HUANG Xiangnian, ZHOU Shan. Research on the frozen rehabilitation training action recognition system based on kinect[J]. Modern Computer, 2014(23): 53-55. |
[10] | 杨文璐, 王杰, 夏斌, 等. 基于Kinect的下肢体康复动作评估系统[J]. 传感器与微系统, 2017, 36(1): 91-94. |
[10] | YANG Wenlu, WANG Jie, XIA Bin, et al. Assessment system of lower limb rehabilitation action based on Kinect[J]. Transducer & Microsystem Technologies, 2017, 36(1): 91-94. |
[11] | 吴齐云, 战荫伟, 邵阳. 基于DTW和K-means的动作匹配和评估[J]. 电子技术应用, 2016, 42(8): 141-143. |
[11] | WU Qiyun, ZHAN Yinwei, SHAO Yang. Human motion matching and evaluation based on STDTW and K-means[J]. Application of Electronic Technique, 2016, 42(8): 141-143. |
[12] | HOUMANFAR R, KARG M, KULI? D. Movement analysis of rehabilitation exercises: Distance metrics for measuring patient progress[J]. IEEE Systems Journal, 2016, 10(3): 1014-1025. |
[13] | SU C J, CHIANG C Y, HUANG J Y. Kinect-enabled home-based rehabilitation system using Dynamic Time Warping and fuzzy logic[J]. Applied Soft Computing, 2014, 22: 652-666. |
[14] | CAPECCI M, CERAVOLO M G, FERRACUTI F, et al. A Hidden Semi-Markov Model based approach for rehabilitation exercise assessment[J]. Journal of Biomedical Informatics, 2018, 78: 1-11. |
[15] | LIAO Y L, VAKANSKI A, XIAN M. A deep learning framework for assessing physical rehabilitation exercises[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2020, 28(2): 468-477. |
[16] | AR I, AKGUL Y S. A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine & Biology Society, 2014, 22(6): 1160-1171. |
[17] | 闫航, 陈刚, 崔莉亚, 等. 基于单目视觉的在线人体康复动作识别[J]. 计算机应用与软件, 2021, 38(2): 171-178. |
[17] | YAN Hang, CHEN Gang, CUI Liya, et al. Online human rehabilitation action recognition based on monocular vision[J]. Computer Applications & Software, 2021, 38(2): 171-178. |
[18] | LIN J F S, KULI? D. Online segmentation of human motion for automated rehabilitation exercise analysis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine & Biology Society, 2014, 22(1): 168-180. |
[19] | 李航. 统计学习方法[M]. 第2版. 北京: 清华大学出版社, 2019. |
[19] | LI Hang. Statistical learning methods[M]. 2nd ed. Beijing: Tsinghua University Press, 2019. |
[20] | HODA M, HODA Y, HAGE A, et al. Cloud-based rehabilitation and recovery prediction system for stroke patients[J]. Cluster Computing, 2015, 18(2): 803-815. |
[21] | VAKANSKI A, JUN H P, PAUL D, et al. A data set of human body movements for physical rehabilitation exercises[J]. Data, 2018, 3(1): 2. |
/
〈 |
|
〉 |