船舶海洋与建筑工程

基于BESO算法的大型海洋垂直轴风力机支撑结构优化

展开
  • 1.上海交通大学 船舶海洋与建筑工程学院;海洋工程国家重点实验室, 上海 200240
    2.上海交通大学 极地深海技术研究院;海洋装备研究院, 上海 200240
    3.湘潭大学 土木工程与力学学院,湖南 湘潭 411105
何文君(1997-),硕士生,从事垂直轴风力机结构减振研究.

收稿日期: 2021-11-07

  修回日期: 2021-12-15

  录用日期: 2021-12-23

  网络出版日期: 2022-11-30

基金资助

国家自然科学基金(52271284);国家自然科学基金(52122110);国家自然科学基金(42076210);国家自然科学基金(51879160);上海市科委重大研究计划(2019-01-07-00-02-E00066);上海市曙光计划(19SG10);上海交通大学深蓝计划(SL2020PT201);上海交通大学深蓝计划(SL2020PT302);湖南省自然科学基金(2021JJ50027)

Supporting Structure Optimization of Offshore Large-Scale Vertical Axis Wind Turbine Based On BESO Algorithm

Expand
  • 1. School of Naval Architecture, Ocean and Civil Engineering; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Institute of Polar and Ocean Technology; Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
    3. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China

Received date: 2021-11-07

  Revised date: 2021-12-15

  Accepted date: 2021-12-23

  Online published: 2022-11-30

摘要

大型海洋垂直轴风力机的研究对发展海洋风能具有重要意义,研究大型垂直轴风力机的合理支撑结构形式对风力发电结构安全至关重要.基于变删除率的双向渐进结构优化(BESO)算法,对大型海洋垂直轴风力机进行支撑结构优化,并通过风力机的动力响应特性分析,验证结构优化方法的可靠性.结果表明:反比例型变删除率的BESO算法能有效改善优化迭代速率,适用于垂直轴风力机的支撑结构优化设计;相比于初始结构,拓扑出的新结构模型在风荷载作用下的风致动力响应显著降低.研究成果可用于垂直轴风力机支撑结构设计优化.

本文引用格式

何文君, 苏捷, 周岱, 韩兆龙, 包艳, 赵永生, 许玉旺, 涂佳黄 . 基于BESO算法的大型海洋垂直轴风力机支撑结构优化[J]. 上海交通大学学报, 2023 , 57(2) : 127 -137 . DOI: 10.16183/j.cnki.jsjtu.2021.448

Abstract

The research on large-scale offshore vertical axis wind turbine is of great significance to the development of ocean wind energy. For the safety of wind power, it is very important to study the reasonable supporting structure of the large-scale wind turbine. In this paper, an supporting structure optimization of a large-scale vertical axis wind turbine based on the variable deletion rate bidirectional evolutionary structural optimization (BESO) algorithm is proposed, and the reliability of structural optimization is verified by analyzing the dynamic response. The results show that this inverse proportional BESO algorithm can effectively improve the optimization iteration rate, and has a wide applicability to the optimal design of vertical axis wind turbine supporting structure. Compared with the initial structure, the wind-induced dynamic response of the topological new structure model under wind load is significantly reduced. The findings can be used to optimize the structural design of vertical axis wind turbine.

参考文献

[1] WANKHADE Y M, BOLKE M R, KANADE S A, et al. A review of wind energy technology[J]. Modern Engineering Research, 2016, 6(2): 2249-6645.
[2] HENDERSON A R. Offshore wind in Europe[J]. Refocus, 2002, 3(2): 14-17.
[3] ZAMANI M, NAZARI S, MOSHIZI S A, et al. Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine[J]. Energy, 2016, 116: 1243-1255.
[4] FIEDLER A J, TULLIS S. Blade offset and pitch effects on a high solidity vertical axis wind turbine[J]. Wind Engineering, 2009, 33(3): 237-246.
[5] ROLIN V F C, PORTé-AGEL F. Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow[J]. Renewable Energy, 2018, 118: 1-13.
[6] MACPHEE D W, BEYENE A. Fluid-structure interaction analysis of a morphing vertical axis wind turbine[J]. Journal of Fluids and Structures, 2016, 60: 143-159.
[7] BALDUZZI F, BIANCHINI A, CARNEVALE E A, et al. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building[J]. Applied Energy, 2012, 97: 921-929.
[8] ZHANG B S, SONG B W, MAO Z Y, et al. A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines[J]. Energy, 2017, 121: 341-355.
[9] 孟珣, 李华军, 包兴先. 采油平台在海上风电支撑体系中的应用研究[J]. 应用基础与工程科学学报, 2010, 18(4): 626-636.
[9] MENG Xun, LI Huajun, BAO Xingxian. Feasible study on oil jacket platforms in supporting structural systems of OWTs[J]. Journal of Basic Science and Engineering, 2010, 18(4): 626-636.
[10] 金浩, 胡以怀, 冯是全. 垂直轴风力机在风力发电中的应用现状及展望[J]. 环境工程, 2015, 33 (Sup.1): 1033-1038.
[10] JIN Hao, HU Yihuai, FENG Shiquan. Current situation and prospect on vertical axis wind turbine in wind power generation[J]. Environmental Engineering, 2015, 33 (Sup.1): 1033-1038.
[11] HENDERSON AR, WITCHER D, MORGAN C A. Floating support structures enabling new markets for offshore wind energy[C/OL]// European Wind Energy Conference 2009. (2009-03-16)[2021-11-08]. https://www.researchgate.net/profile/Andrew-Henderson/publication/228523769_Floating_support_structures_enabling_new_markets_for_offshore_wind_energy/links/550c3e6f0cf212874160852f/Floating-support-structures-enabling-new-markets-for-offshore-wind-energy.pdf.
[12] TANG Y G, HU J, LIU L Q. Study on the dynamic response for floating foundation of offshore wind turbine[C]// Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, Netherlands: ASME, 2011: 929-933.
[13] 刘利琴, 韩袁昭, 肖昌水, 等. 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36(1): 19-26.
[13] LIU Liqin, HAN Yuanzhao, XIAO Changshui, et al. Research on dynamic response of offshore wind turbine system based on new semisubmersible-spar hybrid floating foundation[J]. The Ocean Engineering, 2018, 36(1): 19-26.
[14] DWIYANTORO A, YUWONO T, SUPHANDANI V. Structural design optimization of vertical axis wind turbine type darrieus-savonius bambang[J]. ARPN Journal of Engineering and Applied Sciences, 2016, 11(2): 1073-1077.
[15] HARA Y, HORITA N, YOSHIDA S, et al. Numerical analysis of effects of arms with different cross-sections on straight-bladed vertical axis wind turbine[J]. Energies, 2019, 12(11): 2106.
[16] ISLAM M, FARTAJ A, CARRIVEAU R. Analysis of the design parameters related to a fixed-pitch straight-bladed vertical axis wind turbine[J]. Wind Engineering, 2008, 32: 491-507.
[17] LI Y, CALISAL S M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine[J]. Renewable Energy, 2010, 35(10): 2325-2334.
[18] 何大伟, 吴国庆, 陆彬, 等. 垂直轴风力发电机主轴结构优化设计[J]. 机械设计与制造, 2018(2): 199-201.
[18] HE Dawei, WU Guoqing, LU Bin, et al. Vertical axis wind turbine spindle structure optimization design[J]. Machinery Design & Manufacture, 2018(2): 199-201.
[19] 高振勋, 蒋崇文, 唐金龙, 等. 多层塔式H型立轴风机的性能分析[J]. 电力与能源, 2011, 32(5): 402-407.
[19] GAO Zhenxun, JIANG Chongwen, TANG Jinlong, et al. Performance evaluation of the multi-stage tower-type vertical-axis wind turbine[J]. Power & Energy, 2011, 32(5): 402-407.
[20] 蒋周伟. H型垂直轴风力发电机风振特性与结构优化研究[D]. 武汉: 武汉理工大学, 2012.
[20] JIANG Zhouwei. Study on vibration characteristics and structure optimization of H-type wind power generator with vertical axis[D]. Wuhan: Wuhan University of Technology, 2012.
[21] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199.
[21] WEN Yongpeng, ZHENG Xiaoming, WU Aizhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199.
[22] 才琪, 冯若强. 基于改进双向渐进结构优化法的桁架结构拓扑优化[J]. 建筑结构学报, 2022, 43(4): 68-76.
[22] CAI Qi, FENG Ruoqiang. Topology optimization of truss structure based on improved bi-directional evolutionary structural optimization method[J]. Journal of Building Structures, 2022, 43(4): 68-76.
[23] 刘昆, 郭德松, 王仁华, 等. 基于改进BESO方法的多工况船体开孔孔形优化[J]. 中国海洋平台, 2021, 36(4): 1-8.
[23] LIU Kun, GUO Desong, WANG Renhua, et al. Shape optimization of hull structure hole opening under multiple conditions based on improved BESO method[J]. China Offshore Platform, 2021, 36(4): 1-8.
[24] HAND B, CASHMAN A. Conceptual design of a large-scale floating offshore vertical axis wind turbine[J]. Energy Procedia, 2017, 142: 83-88.
[25] 刘利琴, 赵海祥, 袁瑞, 等. H型浮式垂直轴风力机刚—柔耦合多体动力学建模及仿真[J]. 海洋工程, 2018, 36(3): 1-9.
[25] LIU Liqin, ZHAO Haixiang, YUAN Rui, et al. Modeling and simulation of H-type floating VAWT on rigid-flexible coupling and multi-body dynamics[J]. The Ocean Engineering, 2018, 36(3): 1-9.
[26] TRAN T T, KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable Energy, 2016, 92: 244-261.
[27] CHEN Z W, WANG X D, GUO Y Z, et al. Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions[J]. Renewable Energy, 2021, 163: 1849-1870.
[28] 张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009, 27(6): 729-735.
[28] ZHANG Jian, YANG Qingshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6): 729-735.
[29] 雷航. 垂直轴风力机非定常空气动力特性数值模拟分析[D]. 上海: 上海交通大学, 2019.
[29] LEI Hang. Numerical simulation of the unsteady aerodynamic performance for vertical axis wind turbines[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[30] 杨梦姚, 毛璐璐, 韩兆龙, 等. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356.
[30] YANG Mengyao, MAO Lulu, HAN Zhaolong, et al. Wind vibration and vibration reduction of a H-rotor type three-bladed vertical axis wind turbine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 347-356.
[31] KATONA M C, ZIENKIEWICZ O C. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21(7): 1345-1359.
[32] WANG K, MOAN T, HANSEN M O L. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater[J]. Wind Energy, 2016, 19(10): 1853-1870.
[33] 张森文, 曹开彬. 计算结构动力响应的状态方程直接积分法[J]. 计算力学学报, 2000, 17(1): 94-97.
[33] ZHANG Senwen, CAO Kaibin. Direct integration of state equation method for dynamic response of structure[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 94-97.
[34] HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method[J]. Finite Elements in Analysis and Design, 2007, 43(14): 1039-1049.
[35] 罗静, 张大可, 李海军, 等. 基于一种动态删除率的ESO方法[J]. 计算力学学报, 2015, 32(2): 274-279.
[35] LUO Jing, ZHANG Dake, LI Haijun, et al. ESO method based on a kind of dynamic deletion rate[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 274-279.
[36] 荣见华, 姜节胜, 胡德文, 等. 基于应力及其灵敏度的结构拓扑渐进优化方法[J]. 力学学报, 2003, 35(5): 584-591.
[36] RONG Jianhua, JIANG Jiesheng, HU Dewen, et al. A structural topology evolutionary optimization method based on stresses and their sensitivity[J]. Acta Mechanica Sinica, 2003, 35(5): 584-591.
文章导航

/