基于OpenFOAM的螺旋桨紧急倒车工况数值模拟
收稿日期: 2021-08-06
修回日期: 2021-11-19
录用日期: 2021-12-03
网络出版日期: 2022-11-25
基金资助
国家自然科学基金项目(51779140);中央军委装备发展部快速扶持项目(80907010201);浙江省自然科学基金项目(LQ22E090003);宁波市科技局2025重大专项(2020Z076)
Numerical Simulation of Crashback Condition of a Propeller Based on OpenFOAM
Received date: 2021-08-06
Revised date: 2021-11-19
Accepted date: 2021-12-03
Online published: 2022-11-25
螺旋桨在紧急倒车工况下的水动力特性与船舶的紧急制动能力密切相关并直接影响船舶的航行安全性.基于开源计算流体动力学平台OpenFOAM中的雷诺平均求解器对螺旋桨在紧急倒车工况下的水动力特性及绕流场开展数值研究.以5叶螺旋桨DTMB4381模型为研究对象,对其正车前进以及紧急倒车工况进行数值模拟.通过与国际上公开的模型试验结果进行对比,验证了所采用的数值方法在预报螺旋桨不同工况下水动力性能方面的有效性.基于数值模拟获得的水动力载荷及流场信息,探讨了紧急倒车工况下局部绕流场特征随进速变化的规律及其与螺旋桨整体水动力特性之间的关系,为船舶紧急倒车制动能力评估提供了理论依据.
郭海鹏, 邹早建, 李广年 . 基于OpenFOAM的螺旋桨紧急倒车工况数值模拟[J]. 上海交通大学学报, 2023 , 57(2) : 168 -176 . DOI: 10.16183/j.cnki.jsjtu.2021.305
The hydrodynamic characteristics of a propeller under the crashback condition are closely related to the crash stopping ability of a ship, which directly affect the ship navigational safety. In this paper, a numerical study on the hydrodynamic characteristics of a propeller and the flow field around the propeller under the crashback condition is conducted based on the Reynolds-averaged Navier-Stokes solver in the open source computational fluid dynamics platform OpenFOAM. Taking the 5-blade propeller DTMB4381 model as the study object, the ahead and crashback conditions are numerically simulated. The numerical results are compared with international open model test data to validate the effectiveness of the numerical method in the prediction of the hydrodynamic characteristics of the propeller under different conditions. Based on the obtained hydrodynamic loads and flow field details, the local flow field characteristics changing with the advance velocity and the relation between the local flow fields and the global hydrodynamic forces are explored, which provides theoretical basis for the evaluation of ship crash stopping ability.
[1] | JIANG C W, DONG R, LIU H L, et al. 24-inch water tunnel flow field measurements during propeller crashback[C]// 21st Symposium on Naval Hydrodynamics. Trondheim, Norway: National Academies Press, 1997: 136-146. |
[2] | JESSUP S, CHESNAKAS C, FRY D, et al. Propeller performance at extreme off design conditions[C]// 25th Symposium on Naval Hydrodynamics. St. John’s, Canada: National Academies Press, 2004. |
[3] | CHEN B, STERN F. Computational fluid dynamics of four-quadrant marine-propulsor flow[J]. Journal of Ship Research, 1999, 43(4): 218-228. |
[4] | 李理, 刘可, 李超, 等. 螺旋桨四象限水动力性能数值模拟及应用[J]. 舰船科学技术, 2012, 34(7): 8-14. |
[4] | LI Li, LIU Ke, LI Chao, et al. The research on numerical simulation of propeller’s hydrodynamic performance in four quadrants[J]. Ship Science and Technology, 2012, 34(7): 8-14. |
[5] | VERMA A, JANG H, MAHESH K. The effect of an upstream hull on a propeller in reverse rotation[J]. Journal of Fluid Mechanics, 2012, 704: 61-88. |
[6] | KUMAR P, MAHESH K. Analysis of marine propulsor in crashback using large eddy simulation[C]// 4th International Symposium on Marine Propulsors SMP’15. Austin, USA: Ocean Engineering Group, 2015. |
[7] | 王贵彪, 谢永和, 许颂捷. 导管螺旋桨四象限水动力性能研究[J]. 船舶工程, 2015, 37(10): 26-28. |
[7] | WANG Guibiao, XIE Yonghe, XU Songjie. Research on ducted propeller’s hydrodynamic performance in four quadrants[J]. Ship Engineering, 2015, 37(10): 26-28. |
[8] | 张文璨, 董国祥, 陈伟民, 等. 螺旋桨四象限水动力性能数值计算[J]. 上海船舶运输科学研究所学报, 2016, 39(1): 1-7. |
[8] | ZHANG Wencan, DONG Guoxiang, CHEN Wei-min, et al. Numerical simulation of four-quadrant hydrodynamic performance of propeller[J]. Journal of Shanghai Ship and Shipping Research Institute, 2016, 39(1): 1-7. |
[9] | PERGANDE M, WANG K, NEITZEL-PETERSEN J C, et al. Efficient prediction of crashback performance of controllable pitch propellers[C]// 5th International Symposium on Marine Propulsors SMP’17. Espoo, Finland: VTT Technical Research Center Ltd., 2017. |
[10] | PONTARELLI M, MARTIN J E, CARRICA P M. Dynamic instabilities in propeller crashback[C]// 5th International Symposium on Marine Propulsors SMP’17. Espoo, Finland: VTT Technical Research Center Ltd., 2017. |
[11] | CHEN J, ZOU Z J. LES simulations of the flow around a propeller in crash back and crash ahead[J]. Journal of Ship Mechanics, 2018, 22(3): 296-310. |
[12] | 王超, 李鹏, 王文全, 等. 紧急倒车模式下螺旋桨诱导环状涡的发展机理[J]. 哈尔滨工程大学学报, 2020, 41(12): 1742-1749. |
[12] | WANG Chao, LI Peng, WANG Wenquan, et al. Deformation, evolution and shedding of the annular vortex of propeller in crash-back model[J]. Journal of Harbin Engineering University, 2020, 41(12): 1742-1749. |
[13] | 王超, 李鹏, 王文全, 等. 艇体对螺旋桨紧急倒车诱导涡的影响[J]. 华中科技大学学报(自然科学版), 2020, 48(7): 65-70. |
[13] | WANG Chao, LI Peng, WANG Wenquan, et al. Effect of the submarine-body on the induced vortex by a reversed propeller[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(7): 65-70. |
[14] | 樊翔, 汤瑾璟, 高文, 等. 倒车状况下船舶螺旋桨荷载数值研究[C]// 第三十一届全国水动力学研讨会, 厦门: 海洋出版社, 2020. FANXiang, TANGJinjing, GAOWen, et al. Numerical study on propeller load under reversed propulsion condition[C]// 31st National Conference on Hydrodynamics. Xiamen, China: China Ocean Press, 2020. |
[15] | WANG J H, WAN D C. CFD study of ship stopping maneuver by overset grid technique[J]. Ocean Engineering, 2020, 197: 106895. |
[16] | MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 625-632. |
[17] | 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海: 上海交通大学, 2014. |
[17] | SHEN Zhirong. Development of overset grid technique for hull-propeller-rudder interactions[D]. Shanghai: Shanghai Jiao Tong University, 2014. |
[18] | PATANKAR S V, SPALDING D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. |
[19] | ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65. |
[20] | 吴建威, 尹崇宏, 万德成. 基于三种方法的螺旋桨敞水性能数值预报[J]. 水动力学研究与进展A辑, 2016, 31(2): 177-187. |
[20] | WU Jianwei, YIN Chonghong, WAN Decheng. Numerical prediction of the propeller open-water performance based on three numerical methods[J]. Chinese Journal of Hydrodynamics, 2016, 31(2): 177-187. |
[21] | STERN F, WILSON R V, COLEMAN H W, et al. Verification and validation of CFD simulations[R]. Virginia: Defense Technical Information Center, 1999: 1-55. |
[22] | COPE D M. Design of a free-running, 1/30th Froude scaled model destroyer for in situ hydrodynamic flow visualization[D]. Boston: Massachusetts Institute of Techno-logy, 2012. |
[23] | 陈志明, 袁剑平, 严谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42 (Sup.1): 157-162. |
[23] | CHEN Zhiming, YUAN Jianping, YAN Jin, et al. Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42 (Sup.1): 157-162. |
/
〈 |
|
〉 |