材料科学与工程

单向热塑性复合材料层压板偏轴拉伸试验及其数值模拟

展开
  • a.上海交通大学 机械与动力工程学院,上海 200240
    b.上海交通大学 航空航天学院,上海 200240
张健(1997-),硕士生,从事热塑性复合材料机械连接研究.

收稿日期: 2021-09-14

  修回日期: 2021-10-27

  录用日期: 2021-11-05

  网络出版日期: 2022-11-25

Off-Axis Tensile Test and Numerical Simulation of Unidirectional Thermoplastic Composite Laminates

Expand
  • a. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    b. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-09-14

  Revised date: 2021-10-27

  Accepted date: 2021-11-05

  Online published: 2022-11-25

摘要

AS4/PEEK作为一种高性能的热塑性复合材料在航空航天、军事和汽车等领域应用广泛.对不同角度的单向AS4/PEEK层压板进行偏轴拉伸试验,获得了相应的应力-应变曲线、拉伸强度和断裂面角度.在数值模拟中,采用单参数三维塑性模型描述AS4/PEEK的非线性力学行为,模型中的塑性参数使用信任域反射算法得到.结合LaRC05准则和裂纹带理论开发了基于Abaqus的用户材料子程序VUMAT,并将其应用于偏轴拉伸的数值模拟.结果显示该三维弹塑性损伤本构模型能够较准确地模拟AS4/PEEK的塑性效应,且预测的拉伸强度与试验结果吻合良好.本文提出的三维弹塑性损伤模型为热塑性复合材料塑性变形和损伤的综合分析提供了一种准确且有效的方法.

本文引用格式

张健, 陈秀华, 陈勇, 范寅 . 单向热塑性复合材料层压板偏轴拉伸试验及其数值模拟[J]. 上海交通大学学报, 2023 , 57(2) : 201 -212 . DOI: 10.16183/j.cnki.jsjtu.2021.352

Abstract

As a high-performance thermoplastic composite material, AS4/PEEK has been widely used in aerospace, military, automotive, and other fields. After conducting the off-axial tensile test of unidirectional AS4/PEEK laminates with different angles, the relevant stress-strain curves and tensile strengths, as well as fracture plane angles are obtained. In simulation, a 3D elastic-plastic model where the parameters are determined by trust-region reflective algorithm is used to describe the nonlinear mechanical behavior of AS4/PEEK laminates. In combination with the LaRC05 criterion and the crack zone theory, a user material subroutine VUMAT based on Abaqus is developed and applied to the numerical simulation of off-axis tensile test. The numerical results show that the 3D elastic-plastic damage constitutive model can accurately simulate the plastic effect of AS4/PEEK laminates and the tensile strength predicted by the numerical method agrees well with those from the test. The proposed 3D elastic-plastic damage model provides an accurate and effective method for the comprehensive analysis of plastic deformation and damage of thermoplastic composites.

参考文献

[1] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.
[1] SHEN Guanlin, HU Gengkai. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006.
[2] 王昌斌, 方程, 李晔. 国内外连续玻纤增强热塑性复合材料现状[J]. 汽车文摘, 2020(9): 12-16.
[2] WANG Changbin, FANG Cheng, LI Ye. Current status of continuous glass fiber reinforced thermoplastic composites at home and abroad[J]. Automotive Digest, 2020(9): 12-16.
[3] 刘士琦, 周红霞, 王玉, 等. 热塑性复合材料的应用研究[J]. 化学与粘合, 2021, 43(1): 72-75.
[3] LIU Shiqi, ZHOU Hongxia, WANG Yu, et al. Research progress in the application of environment friendly thermoplastic composite materials[J]. Chemistry and Adhesion, 2021, 43(1): 72-75.
[4] 见雪珍, 杨洋, 袁协尧, 等. 商用客机连续纤维增强热塑性复合材料的现状及其发展趋势[J]. 上海塑料, 2015(2): 17-22.
[4] JIAN Xuezhen, YANG Yang, YUAN Xieyao, et al. Status and development trend of continuous fiber reinforced thermoplastic composites in commercial aircraft[J]. Shanghai Plastics, 2015(2): 17-22.
[5] LAFARIE-FRENOT M C, TOUCHARD F. Comparative in-plane shear behaviour of long-carbon-fibre composites with thermoset or thermoplastic matrix[J]. Composites Science and Technology, 1994, 52(3): 417-425.
[6] WANG S Y, ZHANG J Z, FANG G D, et al. Mathematical description of mechanical behavior of woven fabric reinforced PPS-based composites at high temperature[J]. Polymer Composites, 2019, 40(3): 1097-1103.
[7] TAN W, FALZON B G. Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading[J]. Composites Science and Technology, 2016, 126: 60-77.
[8] 陈静芬. 基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J]. 复合材料学报, 2017, 34(4): 545-557.
[8] CHEN Jingfen. Failure loads prediction of composite laminates using a combined elastoplastic damage model[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 545-557.
[9] 胡祎乐, 余音, 汪海, 等. 纤维增强复合材料机翼长桁压缩破坏预测方法[J]. 上海交通大学学报, 2012, 46(9): 1471-1475.
[9] HU Yile, YU Yin, WANG Hai, et al. A failure prediction method of fiber-reinforced composite wing stringer subjected to compressive loading[J]. Journal of Shanghai Jiao Tong University, 2012, 46(9): 1471-1475.
[10] 刘魏光, 余音, 汪海. 考虑剪切非线性的复合材料渐进损伤模型[J]. 上海交通大学学报, 2016, 50(2): 194-199.
[10] LIU Weiguang, YU Yin, WANG Hai. A damage model considering shear nonlinearity for progressive failure analysis of composite laminates[J]. Journal of Shanghai Jiao Tong University, 2016, 50(2): 194-199.
[11] 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7): 1878-1888.
[11] TUO Hongliang, MA Xiaoping, LU Zhixian. A model for low velocity impact damage analysis of composite laminates based on continuum damage mechanics[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1878-1888.
[12] 兰剑, 谢官模, 夏俊康, 等. 复合材料开孔层合板双轴拉伸的渐进损伤[J]. 材料科学与工程学报, 2020, 38(2): 214-219.
[12] LAN Jian, XIE Guanmo, XIA Junkang, et al. Progressive damage of composite perforated laminates under biaxial tensile loading[J]. Journal of Materials Science and Engineering, 2020, 38(2): 214-219.
[13] 何柏灵, 葛东云. 复合材料连续损伤力学模型在螺栓接头渐进失效预测中的应用[J]. 复合材料学报, 2020, 37(8): 2065-2075.
[13] HE Boling, GE Dongyun. Application of continuum damage mechanics model for composites in progressive failure prediction of bolted joints[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2065-2075.
[14] ZHUANG F J, ARTEIRO A, FURTADO C, et al. Mesoscale modelling of damage in single-and double-shear composite bolted joints[J]. Composite Structures, 2019, 226: 111210.
[15] ZHOU J J, WEN P H, WANG S N. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 225: 111113.
[16] MOHAMMADI B, MAHMOUDI A. Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach[J]. Theoretical and Applied Fracture Mechanics, 2018, 95: 18-27.
[17] LI X, MA D Y, LIU H F, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 207: 727-739.
[18] MAA R H, CHENG J H. A CDM-based failure model for predicting strength of notched composite laminates[J]. Composites Part B: Engineering, 2002, 33(6): 479-489.
[19] XIAO X R. Modeling energy absorption with a damage mechanics based composite material model[J]. Journal of Composite Materials, 2009, 43(5): 427-444.
[20] LADEVEZE P, LEDANTEC E. Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology, 1992, 43(3): 257-267.
[21] SUN C T, CHEN J L. A simple flow rule for characterizing nonlinear behavior of fiber composites[J]. Journal of Composite Materials, 1989, 23(10): 1009-1020.
[22] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[23] PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19/20): 2313-2341.
[24] BA?ANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177.
[25] ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039M-17[S/OL]. (2017-12-11) [2021-09-14]. https://www.astm.org/d3039_d3039 m-17.html.
[26] WEEKS C A, SUN C T. Modeling non-linear rate-dependent behavior in fiber-reinforced composites[J]. Composites Science and Technology, 1998, 58(3/4): 603-611.
[27] WANG J, XIAO Y. Some improvements on Sun-Chen’s one-parameter plasticity model for fibrous composites. Part I: Constitutive modelling for tension-compression asymmetry response[J]. Journal of Composite Materials, 2017, 51(3): 405-418.
[28] JANG J, JEON S Y, CHOI J H, et al. Mechanical analysis of fiber-reinforced plastics using an elastoplastic-damage constitutive equation considering asymmetric material behavior[J]. Composite Structures, 2021, 272: 114268.
[29] PINHO S T, IANNUCCI L, ROBINSON P. Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(5): 766-777.
[30] EGAN B. Finite element modelling and high speed testing of countersunk composite aircraft joints[D]. Limerick: University of Limerick, 2014.
[31] DONADON M V, DE ALMEIDA S F M, ARBELO M A, et al. A three-dimensional ply failure model for composite structures[J]. International Journal of Aerospace Engineering, 2009, 2009: 486063.
[32] MATZENMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2): 125-152.
[33] LIU H B, LIU J, KABOGLU C, et al. Experimental and numerical studies on the behaviour of fibre-reinforced composites subjected to soft impact loading[J]. Procedia Structural Integrity, 2019, 17: 992-1001.
[34] REN R, LE G G, ZHONG J L, et al. Numerical research on elasto-plastic behaviors of fiber-reinforced polymer based composite laminates[J]. Composite Structures, 2019, 207: 364-372.
[35] LIU H B, LIU J, DING Y Z, et al. A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites[J]. Composites Part B: Engineering, 2020, 201: 108389.
[36] 李璇, 陈秀华, 史晓辉, 等. 考虑双模量影响的复合材料销钉连接失效分析[J]. 上海交通大学学报, 2015, 49(1): 101-108.
[36] LI Xuan, CHEN Xiuhua, SHI Xiaohui, et al. Effect of bimodularity on failure behaviors of pinned-joint composite laminates[J]. Journal of Shanghai Jiao Tong University, 2015, 49(1): 101-108.
文章导航

/