极限学习机及其在质子交换膜燃料电池参数辨识中的应用
收稿日期: 2021-11-11
修回日期: 2022-02-23
录用日期: 2022-02-24
网络出版日期: 2022-11-24
基金资助
国家自然科学基金(61963020);云南省重大科技专项计划(202002AF080001);云南省自然科学基金(202001AT070096)
Extreme Learning Machine and Its Application in Parameter Identification of Proton Exchange Membrane Fuel Cell
Received date: 2021-11-11
Revised date: 2022-02-23
Accepted date: 2022-02-24
Online published: 2022-11-24
为对质子交换膜燃料电池(PEMFC)进行精确建模,需要准确辨识PEMFC中的未知参数.然而,PEMFC的参数辨识是一个多变量、多峰值和强耦合的非线性优化问题,传统的参数辨识方法往往得不到满意的结果.此外,不同运行条件下产生的噪声会阻碍启发式算法(MhAs)获取精确的参数.针对该问题,提出一种基于极限学习机(ELM)的MhAs策略——ELM-MhAs,以实现PEMFC的参数辨识.利用ELM对数据进行训练以降低或消除噪声,为MhAs提供更为准确可靠的适应度函数,从而保证MhAs对PEMFC参数的精确辨识.为验证该策略的可行性和有效性,在低温、低相对湿度和高温、高相对湿度两种条件下,分别对25组电压-电流数据进行不降噪、贝叶斯正则神经网络(BRNN)降噪以及ELM降噪处理,随后对比不同数据中6种MhAs和列文伯格-马夸尔特反向传播法的参数辨识结果.实验结果表明,与不降噪和BRNN降噪处理相比,应用ELM能够显著减少数据噪声对实验数据的影响,从而有效提高MhAs的参数辨识精度.
杨博, 曾春源, 陈义军, 束洪春, 曹璞璘 . 极限学习机及其在质子交换膜燃料电池参数辨识中的应用[J]. 上海交通大学学报, 2023 , 57(4) : 482 -494 . DOI: 10.16183/j.cnki.jsjtu.2021.453
In order to develop an accurate model of proton exchange membrane fuel cell (PEMFC), it is essential to exactly identify unknown parameters in PEMFC. However, parameter identification of PEMFC is a multi-variable, multi-peak, and strongly coupled nonlinear optimization problem, of which traditional parameter identification methods often fail to achieve satisfactory results. In addition, noises generated under different operation conditions will hinder meta-heuristic algorithms (MhAs) to obtain accurate parameters. To handle these thorny obstacles, extreme learning machine based MhAs (ELM-MhAs) are proposed for PEMFC parameter identification, which can achieve denoising through ELM. ELM is used to train data to reduce or eliminate noises and provide more accurate and reliable fitness functions for MhAs, thus ensuring the accurate identification of PEMFC parameters by MhAs. To verify the feasibility and effectiveness of this strategy, 25 groups of voltage-current data are processed without denoising, with Bayesian regularization neural network (BRNN) denoising or with ELM denoising under two conditions—low temperature and low relative humidity; high temperature and high relative humidity, respectively. Subsequently, parameter identification results of six MhAs and a Levenberg-Marquardt backpropagation of different data are thoroughly compared. The simulation results indicate that ELM can significantly reduce the impact of noise on the data, while effectively improving the parameter identification accuracy of MhAs, compared with no denoising and BRNN denoising.
[1] | 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22): 76-83. |
[1] | SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22): 76-83. |
[2] | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506. |
[2] | CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506. |
[3] | 李奇, 王晓锋, 孟翔, 等. 基于在线辨识和极小值原理的PEMFC混合动力系统综合能量管理方法[J]. 中国电机工程学报, 2020, 40(21): 6991-7002. |
[3] | LI Qi, WANG Xiaofeng, MENG Xiang, et al. Comprehensive energy management method of PEMFC hybrid power system based on online identification and minimal principle[J]. Proceedings of the CSEE, 2020, 40(21): 6991-7002. |
[4] | YANG B, WANG J B, YU L, et al. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms[J]. Journal of Cleaner Production, 2020, 265: 121660. |
[5] | MACEDO-VALENCIA J, SIERRA J M, FIGUEROA-RAMíREZ S J, et al. 3D CFD modeling of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23425-23433. |
[6] | OLIVIER P, BOURASSEAU C, BOUAMAMA B. Dynamic and multiphysic PEM electrolysis system modelling: A bond graph approach[J]. International Journal of Hydrogen Energy, 2017, 42(22): 14872-14904. |
[7] | 潘文霞, 陈健强, 张阳, 等. 混合发电系统中的质子交换膜燃料电池建模及其应用[J]. 电力系统保护与控制, 2012, 40(12): 13-18. |
[7] | PAN Wenxia, CHEN Jianqiang, ZHANG Yang, et al. Modeling of PEMFC and application in hybrid power system[J]. Power System Protection and Control, 2012, 40(12): 13-18. |
[8] | SALIM R, NABAG M, NOURA H, et al. The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization[J]. Renewable Energy, 2015, 82: 26-34. |
[9] | TIAN E L, EBADI A G, MAVALURU D, et al. Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm[J]. Computational Intelligence, 2019, 35(4): 1021-1041. |
[10] | ALI M, EL-HAMEED M A, FARAHAT M A. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer[J]. Renewable Energy, 2017, 111: 455-462. |
[11] | EL-FERGANY A A, HASANIEN H M, AGWA A M. Semi-empirical PEM fuel cells model using whale optimization algorithm[J]. Energy Conversion and Management, 2019, 201: 112197. |
[12] | BEN MESSAOUD R, MIDOUNI A, HAJJI S. PEM fuel cell model parameters extraction based on moth-flame optimization[J]. Chemical Engineering Science, 2021, 229: 116100. |
[13] | SUN Z, WANG N, BI Y R, et al. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm[J]. Energy, 2015, 90: 1334-1341. |
[14] | ISA Z M, NAYAN N M, ARSHAD M H, et al. Optimizing PEMFC model parameters using ant lion optimizer and dragonfly algorithm: A comparative study[J]. International Journal of Electrical and Computer Engineering, 2019, 9(6): 5295. |
[15] | SELEEM S I, HASANIEN H M, EL-FERGANY A A. Equilibrium optimizer for parameter extraction of a fuel cell dynamic model[J]. Renewable Energy, 2021, 169: 117-128. |
[16] | YANG B, LI D Y, ZENG C Y, et al. Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms[J]. Energy, 2021, 228: 120592. |
[17] | YANG B, ZENG C Y, WANG L, et al. Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm[J]. International Journal of Hydrogen Energy, 2021, 46(44): 22998-23012. |
[18] | 王筱彤, 李奇, 王天宏, 等. 基于离散区间二进制序列激励信号的燃料电池EIS测量及故障诊断方法[J]. 中国电机工程学报, 2020, 40(14): 4526-4537. |
[18] | WANG Xiaotong, LI Qi, WANG Tianhong, et al. EIS measurement based on DIBS excitation signal and fault diagnosis method of fuel cell[J]. Proceedings of the CSEE, 2020, 40(14): 4526-4537. |
[19] | 孙术发, 杨洁, 唐华林, 等. PEMFC输出特性建模与多因素仿真分析[J]. 哈尔滨工业大学学报, 2019, 51(10): 144-151. |
[19] | SUN Shufa, YANG Jie, TANG Hualin, et al. PEMFC output characteristics modeling and multi-factor simulation analysis[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 144-151. |
[20] | BLANCO-COCOM L, BOTELLO-RIONDA S, ORDO?EZ L C, et al. Robust parameter estimation of a PEMFC via optimization based on probabilistic model building[J]. Mathematics and Computers in Simulation, 2021, 185: 218-237. |
[21] | 殷豪, 曾云, 孟安波, 等. 基于奇异谱分析-模糊信息粒化和极限学习机的风速多步区间预测[J]. 电网技术, 2018, 42(5): 1467-1474. |
[21] | YIN Hao, ZENG Yun, MENG Anbo, et al. Wind speed multi-step interval prediction based on singular spectrum analysis-fuzzy information granulation and extreme learning machine[J]. Power System Technology, 2018, 42(5): 1467-1474. |
[22] | 吴忠强, 戚松岐, 尚梦瑶, 等. 基于优化极限学习机的直流微电网并网等效建模[J]. 电力自动化设备, 2020, 40(6): 43-49. |
[22] | WU Zhongqiang, QI Songqi, SHANG Mengyao, et al. Grid-connected equivalent modeling of DC microgrid based on optimized extreme learning machine[J]. Electric Power Automation Equipment, 2020, 40(6): 43-49. |
[23] | 邵宇鹰, 彭鹏, 张秋桥, 等. 基于极限学习机与负荷密度指标法的空间负荷预测[J]. 电力工程技术, 2021, 40(1): 86-91. |
[23] | SHAO Yuying, PENG Peng, ZHANG Qiuqiao, et al. Spatial load forecasting based on ELM and clustering algorithm[J]. Electric Power Engineering Technology, 2021, 40(1): 86-91. |
[24] | 周锋, 孙廷玺, 权少静, 等. 基于集合经验模态分解和极限学习机的变压器油中溶解气体体积分数预测方法[J]. 高电压技术, 2020, 46(10): 3658-3665. |
[24] | ZHOU Feng, SUN Tingxi, QUAN Shaojing, et al. Predication of dissolved gases concentration in transformer oil based on ensemble empirical mode decomposition and extreme learning machine[J]. High Voltage Engineering, 2020, 46(10): 3658-3665. |
[25] | 孙莉, 李静, 李继云, 等. 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究[J]. 太阳能学报, 2020, 41(8): 221-226. |
[25] | SUN Li, LI Jing, LI Jiyun, et al. Research on fault diagnosis of photovoltaic power station equipment based on sparse Bayesian extreme learning machine[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 221-226. |
[26] | 陈谦, 王朝辉, 陈渊召, 等. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104. |
[26] | CHEN Qian, WANG Chaohui, CHEN Yuanzhao, et al. Corrosion assessment and prediction of steel bridge deck based on extreme learning machine[J]. Materials Reports, 2020, 34(14): 14099-14104. |
[27] | 汪颖, 王欢, 张姝. 基于优化极限学习机的电压暂降源识别方法[J]. 电力系统自动化, 2020, 44(9): 135-143. |
[27] | WANG Ying, WANG Huan, ZHANG Shu. Recognition method of voltage sag source based on optimized extreme learning machine[J]. Automation of Electric Power Systems, 2020, 44(9): 135-143. |
[28] | YANG B, CHEN Y J, GUO Z X, et al. Levenberg-Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells[J]. International Journal of Energy Research, 2021, 45(12): 17903-17923. |
[29] | 游志宇, 汪立伟. 高速PEMFC单片电压监测系统设计[J]. 西南民族大学学报(自然科学版), 2019, 45(5): 499-506. |
[29] | YOU Zhiyu, WANG Liwei. Design of high speed PEMFC single cell voltage monitoring system[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(5): 499-506. |
[30] | 刘佼龙, 杨莉, 刘教瑜, 等. PEMFC电压监控系统设计[J]. 微型机与应用, 2017, 36(3): 85-87. |
[30] | LIU Jiaolong, YANG Li, LIU Jiaoyu, et al. Design of PEMFC voltage monitoring system[J]. Microcomputer & Its Applications, 2017, 36(3): 85-87. |
[31] | 钟崇霖, 马天才. 基于LTC6803的低成本燃料电池单体电压监测器设计[J]. 机电一体化, 2017, 23(1): 48-52. |
[31] | ZHONG Chonglin, MA Tiancai. Low-cost fuel cell monomer voltage monitor design based on LTC6803[J]. Mechatronics, 2017, 23(1): 48-52. |
[32] | KLER D, RANA K P S, KUMAR V. Parameter extraction of fuel cells using hybrid interior search algorithm[J]. International Journal of Energy Research, 2019, 43(7): 2854-2880. |
/
〈 |
|
〉 |