船舶海洋与建筑工程

隧道周围饱和软土二维非线性固结分析

展开
  • 1.浙江大学 滨海和城市岩土工程研究中心, 杭州 310058
    2.浙江省建筑设计研究院, 杭州 310006
    3.浙江大学建筑设计研究院有限公司, 杭州 310028
    4.浙江大学平衡建筑研究中心, 杭州 310028
    5.浙江科技学院 土木与建筑工程学院, 杭州 310023
胡安峰(1974-),教授,博士生导师,从事桩基工程、软黏土力学、近海岩土工程及深度学习理论在岩土工程中的应用研究.

收稿日期: 2022-06-21

  修回日期: 2022-08-01

  录用日期: 2022-08-16

  网络出版日期: 2022-11-18

基金资助

国家自然科学基金(51978612)

Two Dimensional Nonlinear Consolidation Analysis of Saturated Soft Soil Around Tunnel

Expand
  • 1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
    2. Zhejiang Province Architectural Design and Research Institute, Hangzhou 310006, China
    3. Architectural Design and Research Institute of Zhejiang University Co., Ltd., Hangzhou 310028, China
    4. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
    5. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China

Received date: 2022-06-21

  Revised date: 2022-08-01

  Accepted date: 2022-08-16

  Online published: 2022-11-18

摘要

考虑隧道周围软土压缩性和渗透性的非线性变化,建立二维非线性渗流固结控制方程,利用一种交替隐式差分法进行求解,得到隧道完全透水、完全不透水和半透水三种情况下平均固结度随时间的发展规律;通过将退化解与现有解析解进行对比,验证了差分解的正确性.同时,分析了压缩指数Cc和渗透指数Ck对隧道周围软土固结度变化的影响规律.结果表明:隧道透水性是影响固结度发展变化的重要因素;Cc对固结度发展的影响小于Ck;渗流固结会导致隧道周围土体的有效应力场发生变化,平均固结度随着Ck的增大而减小.若不考虑土体非线性,将会对固结度计算产生较大误差.

本文引用格式

胡安峰, 龚昭祺, 肖志荣, 陈缘 . 隧道周围饱和软土二维非线性固结分析[J]. 上海交通大学学报, 2023 , 57(12) : 1631 -1638 . DOI: 10.16183/j.cnki.jsjtu.2022.228

Abstract

Considering the nonlinear changes of compressibility and permeability of soft soil around the tunnel, a two-dimensional nonlinear seepage consolidation control equation is established, which is solved by an alternating implicit difference method, and the development law of the average degree of consolidation with time under the three conditions of complete permeability, complete impermeability, and semi permeability of the tunnel is obtained. By comparing the degenerate solution with the existing analytical solution, the correctness of the difference solution is verified. In addition, the effects of compression index Cc and permeability index Ck on the consolidation degree of soft soil around the tunnel are analyzed. The results show that the permeability of tunnel is an important factor affecting the development and change of consolidation degree. The influence of compression index Cc on the development of degree of consolidation is less than that of permeability index Ck. Seepage consolidation will change the effective stress field of the soil around the tunnel, and the average degree of consolidation decreases with the increase of permeability index Ck. If the nonlinearity of soil is not considered, there will be a large error in the calculation of degree of consolidation.

参考文献

[1] 蒋洪胜, 侯学渊. 盾构掘进对隧道周围土层扰动的理论与实测分析[J]. 岩石力学与工程学报, 2003(9): 1514-1520.
[1] JIANG Hongsheng, HOU Xueyuan. Theoretical and measured analysis of soil disturbance around tunnel caused by shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(9): 1514-1520.
[2] 陈宇, 朱继文. 双圆盾构隧道的流固耦合分析[J]. 地下空间与工程学报, 2010, 6(1): 21-27.
[2] CHEN Yu, ZHU Jiwen. Fluid structure coupling analysis of double circular shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 21-27.
[3] 魏新江, 陈伟军, 魏纲, 等. 盾构隧道施工引起的土体初始超孔隙水压力分布研究[J]. 岩土力学, 2012, 33(7): 2103-2109.
[3] WEI Xinjiang, CHEN Weijun, WEI Gang, et al. Study on initial excess pore water pressure distribution of soil caused by shield tunnel construction[J]. Chinese Journal of Rock and Soil Mechanics, 2012, 33(7): 2103-2109.
[4] SHI X M, LIU B G, TANANT D, et al. Influence of consolidation settlement on the stability of inclined TBM tunnels in a coal mine[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2017, 69: 64-71.
[5] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 315-320.
[6] JALLOW A, OU C Y, LIM A. Three-dimensional numerical study of long-term settlement induced in shield tunneling[J]. Tunnelling and Underground Space Technology, 2019, 88(6): 221-236.
[7] SHIN J H, KIM S H, SHIN Y S, Long-term mechanical and hydraulic interaction and leakage evaluation of segmented tunnels[J]. Soils and Foundations. 2012, 52 (1): 38-48.
[8] WU H N, SHEN S L, CHE R P, et al. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels[J]. Computers and Geotechnics, 2020, 122(C): 103549-103549.
[9] HUANGFU M, WANG M S, TAN Z S, et al. Analytical solutions for steady seepage into an underwater circular tunnel[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2010, 25(4): 391-396.
[10] 郑永来, 李美利, 王明洋, 等. 软土隧道渗漏对隧道及地面沉降影响研究[J]. 岩土工程学报, 2005, 27(2): 243-247.
[10] ZHENG Yonglai, LI Meili, WANG Mingyang, et al. Study on the influence of soft soil tunnel leakage on tunnel and ground settlement[J]. Chinese Journal of Geotechnical engineering, 2005, 27(2): 243-247.
[11] 詹美礼, 钱家欢, 陈绪禄. 粘弹性地基中洞周土体固结问题的解析解[J]. 河海大学学报, 1993, 21(2): 54-60.
[11] ZHAN Meili, QIAN Jiahuan, CHEN Xulu. Analytical solution of soil consolidation around tunnel in viscoelastic foundation[J]. Journal of Hohai University, 1993, 21(2): 54-60.
[12] ZHANG Z G, ZHANG M X, PAN Y T, et al. Mathematical modelling for ground consolidation settlements induced by lining leakage of shield tunnel under train loading in viscoelastic porous soils[J]. Applied Mathematical Modelling, 2021, 98: 537-562.
[13] 曹奕. 软土中盾构隧道的长期非线性固结变形研究[D]. 杭州: 浙江大学, 2014.
[13] CAO Yi. Study on long-term nonlinear consolidation deformation of shield tunnel in soft soil[D]. Hangzhou: Zhejiang University, 2014.
[14] 童磊. 软土浅埋隧道变形、渗流及固结性状研究[D]. 杭州: 浙江大学, 2010.
[14] TONG Lei. Study on deformation, seepage and consolidation behavior of shallow buried tunnel in soft soil[D]. Hangzhou: Zhejiang University, 2010.
[15] LI X. Stress and displacement fields around a deep circular tunnel with partial sealing[J]. Computers and Geotechnics, 1999, 24(2): 125-140.
[16] 李传勋, 谢康和, 胡安峰, 等. 基于指数形式渗流考虑初始有效应力非均匀分布的软土一维非线性固结分析[J]. 岩石力学与工程学报, 2012, 31(Sup.1): 3270-3277.
[16] LI Chuanxun, XIE Kanghe, HU Anfeng, et al. One dimensional nonlinear consolidation analysis of soft soil considering non-uniform distribution of initial effective stress based on exponential seepage[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup.1): 3270-3277.
[17] HU Y Y, ZHOU W H, CAI Y Q. Large-strain elastic viscoplastic consolidation analysis of very soft clay layers with vertical drains under preloading[J]. Canadian Geotechnical Journal, 2013, 51(2): 144-157.
[18] LIU Z Y, CUI P L, ZHANG J C, et al. Consolidation analysis of ideal sand-drained ground with fractional-derivative Merchant model and non-Darcian flow described by non-Newtonian index[J]. Mathematical Problems in Engineering, 2019: 1-12.
[19] 张锁春. 抛物型方程定解问题的有限差分数值计算[M]. 北京: 科学出版社, 2010: 1-200.
[19] ZHANG Suochun. Finite difference numerical calculation of definite solution problem of parabolic equation[M]. Beijing: Science Press, 2010: 1-200.
[20] BERRY P L, WILKINSON W B. The radial consolidation of clay soils[J]. Geotechnique, 1969, 19(2): 253-284.
[21] 庄迎春, 刘世明, 谢康和. 萧山软粘土一维固结系数非线性研究[J]. 岩石力学与工程学报, 2005(24): 4565-4569.
[21] ZHUANG Yingchun, LIU Shiming, XIE Kanghe. Nonlinear study on one-dimensional consolidation coefficient of Xiaoshan soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(24): 4565-4569.
文章导航

/