机械与动力工程

绿色工质HP-1高温热泵系统中膨胀阀开度与流量匹配特性

展开
  • 1.西安建筑科技大学 建筑设备科学与工程学院, 西安 710055
    2.浙江省化工研究院有限公司含氟温室气体替代及控制处理国家重点实验室, 杭州 310023
    3.上海交通大学 制冷与低温工程研究所, 上海 200240
王约翰(1998-),硕士生,从事绿色环保高温热泵技术和新型制冷剂膨胀节流特性研究.

收稿日期: 2022-05-10

  修回日期: 2022-06-06

  录用日期: 2022-06-17

  网络出版日期: 2022-11-11

基金资助

国家自然科学基金(52036004)

Matching Characteristics of Expansion Valve Opening and Flow Rate of High Temperature Heat Pump with Green Refrigerant HP-1

Expand
  • 1. School of Building Services Sciences and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    2. State Key Laboratory of the Fluorinated Greenhouse Gases Replacement and Control Treatment, Zhejiang Research Institute of Chemical Industry Co., Ltd., Hangzhou 310023, China
    3. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2022-05-10

  Revised date: 2022-06-06

  Accepted date: 2022-06-17

  Online published: 2022-11-11

摘要

节流过程作为热泵系统中的重要环节,对系统运行有着重要影响.以新型环保工质HP-1准二级压缩高温热泵为对象,考虑电子膨胀阀的阀体开度和制冷剂性质等参数影响,利用MATLAB建立系统循环和电子膨胀阀的数学模型,对系统在变工况下的电子膨胀阀开度与流量匹配特性进行模拟,并利用实验数据通过幂律拟合的方法得到了HP-1的流量系数关联式.研究结果表明:椭圆锥形阀体结构的电子膨胀阀可用于HP-1高温热泵系统,能够适应系统在变工况下的节流特性,蒸发温度在50~90 ℃、冷凝温度在60~120 ℃范围变化时,该种类型阀体用于主节流阀的开度调节范围为49.8%~69.8%,用于补气路节流阀的开度调节范围为41.5%~56.0%,且经过实验验证具有良好适用性;获得的拟合关联式与实际数据的相对偏差在 -7.8%~+7.5%之间,能够准确地预测电子膨胀阀的流量特性.根据制冷剂性质选择与之匹配的电子膨胀阀, 并对其控制系统进行优化改进,这对于实际机组的运行性能至关重要.本研究为高温热泵用电子膨胀阀的选型与控制系统的优化提供了良好的研究基础.

本文引用格式

王约翰, 南晓红, 欧阳洪生, 郭智恺, 胡斌, 王如竹 . 绿色工质HP-1高温热泵系统中膨胀阀开度与流量匹配特性[J]. 上海交通大学学报, 2023 , 57(10) : 1367 -1377 . DOI: 10.16183/j.cnki.jsjtu.2022.155

Abstract

The throttling process, as an important part of the heat pump system, plays a crucial role in the efficient and reliable operation of the whole system. This paper, taking the quasi two-stage compression high-temperature heat pump with green refrigerant HP-1 as the research subject, established the mathematical models of the circulatory system and electronic expansion valve by using MATLAB and considering the influence of the opening of electronic expansion valve and thermodynamic properties of the new green refrigerant. It simulated the matching characteristics of electronic expansion valve opening and flow rate under variable operating conditions, and fitted the HP-1 dimensionless flow coefficient correlation by power-law distribution using experimental data. The research results show that the electronic expansion valve with an elliptical conical body structure adapts to the throttling characteristics of the HP-1 high-temperature heat pump system under variable operating conditions. When the evaporating temperature varies from 50 ℃ to 90 ℃ and the condensing temperature varies from 60 ℃ to 120 ℃, the opening adjustment range of this type of valve body is from 49.8% to 69.8% for the main throttle valve, and from 41.5% to 56.0% for the injection throttle valve. The relative deviation of the fitted correlation results and the actual test data is between -7.8% and +7.5%, and the flow coefficient correlation can accurately predict the flow characteristics of the electronic expansion valve with a similar body structure. The selection of favorable electronic expansion valve matching refrigerant properties and the optimization of the electronic expansion valve control system are essential for the actual operating performance. This study provides a good research foundation for the selection of electronic expansion valves and the optimization of the control system for the HP-1 high temperature heat pump.

参考文献

[1] 柴麒敏. 中国新达峰目标与碳中和愿景的政策展望[J]. 世界环境, 2021(1): 20-22.
[1] CHAI Qimin. Policy outlook on China’s new goal of peaking carbon dioxide emissions and vision of carbon neutrality[J]. World Environment, 2021(1): 20-22.
[2] IEA. Word energy outlook 2019[M]. Paris, France: International Energy Agency, 2019.
[3] COOPER S J G, HAMMOND G P, HEWITT N, et al. Energy saving potential of high temperature heat pumps in the UK Food and Drink sector[J]. Energy Procedia, 2019, 161(2): 142-149.
[4] KOSMADAKIS G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries[J]. Applied Thermal Engineering, 2019, 156(25): 287-298.
[5] ARPAGAUS C, FREDERIC B, UHLMANN M, et al. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials[J]. Energy, 2018, 152(3): 985-1010.
[6] 沈九兵, 郭霆, 武晓昆, 等. 单级/复叠双制式热泵干燥系统设计与试验研究[J]. 机械工程学报, 2018, 54(10): 218-224.
[6] SHEN Jiubing, GUO Ting, WU Xiaokun, et al. Design and experimental study of a heat pump dryer with dual models of single stage and cascade cycles[J]. Journal of Mechanical Engineering, 2018, 54(10): 218-224.
[7] 杨梦, 张华, 孟照峰, 等. 新型环保高温工质HFO-1336 mzz(Z)的研究进展[J]. 制冷学报, 2019, 40(6): 46-52.
[7] YANG Meng, ZHANG Hua, MENG Zhaofeng, et al. Research progress of the new environmentally friendly high temperature refrigerant HFO-1336 mzz(Z)[J]. Journal of Refrigeration, 2019, 40(6): 46-52.
[8] ABAS N, KALAIR A R, KHAN N, et al. Natural and synthetic refrigerants, global warming: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 90(3): 557-569.
[9] MATEU R C, NAVARRO E J, MOTA B A, et al. Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336 mzz(Z)[J]. Applied Thermal Engineering, 2019, 152(2): 762-777.
[10] MATEU R C, MOTA B A, NAVARRO E J. Comparative analysis of HFO-1234ze(E) and R-515B as low GWP alternatives to HFC-134a in moderately high temperature heat pumps[J]. International Journal of Refrigeration, 2021, 124(4): 197-206.
[11] KONDOU C, KOYAMA S. Thermodynamic assessment of high-temperature heat pumps using low-GWP HFO refrigerants for heat recovery[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2015, 53(5): 126-141.
[12] LONGO G A, MANCIN S, RIGHETTI G, et al.Assessment of the low-GWP refrigerants R600a HFO-1234ze(Z) and HFO-1233zd(E) for heat pump and organic Rankine cycle applications[J]. Applied Thermal Engineering, 2020, 167(25): 114804.
[13] KONTOMARIS K, KONSTANTINOS M.Use of E-1, 1, 1, 4, 4, 4-hexafluoro-2-butene in heat pumps: AU2013296453[P]. 2015-01-29[2022-05-10].
[14] ORKIN V L, MARTYNOVA L E, KURYLO M J. Photochemical Properties of trans-1-chloro-3, 3, 3-trifluoropropene (trans-CHCl=CHCF3): OH Reaction Rate Constant, UV and IR Absorption Spectra, GWP and ODP[J]. The Journal of Physical Chemistry A, 2014, 118(28): 5263-5271.
[15] 张于峰, 孔令腾, 于晓慧, 等. 一种高温热泵制冷剂的理论和实验研究[J]. 天津大学学报, 2016, 49(3): 314-319.
[15] ZHANG Yufeng, KONG Lingteng, YU Xiaohui. et al. Theoretical and experimental study on a high temperature heat pump refrigerant[J]. Journal of Tianjin University, 2016, 49(3): 314-319.
[16] ZHANG Y, ZHANG Y, YU X. et al. Analysis of a high temperature heat pump using BY-5 as refrigerant[J]. Applied Thermal Engineering, 2017, 127(25): 1461-1468.
[17] 欧阳洪生, 郭智恺, 张琦炎, 等. 一种组合物及其应用: CN201910158918.1[P]. 2020-07-07[2022-05-10].
[17] OUYANG Hongsheng, GUO Zhikai, ZHANG Qi-yan, et al. A composition and its application: CN201910158918.1[P]. 2020-07-07[2022-05-10].
[18] 胡鹏荣, 陶乐仁, 何俊, 等. 电子膨胀阀开度对R32水源热泵系统性能的影响[J]. 制冷学报, 2020, 41(3): 111-116.
[18] HU Pengrong, TAO Leren, HE Jun, et al. Influence of the degree of opening of electronic expansion valve on performance of R32 water source heat pump system[J]. Journal of Refrigeration, 2020, 41(3): 111-116.
[19] 虞中旸, 陶乐仁, 袁朝阳, 等. 电子膨胀阀调节对空气源热泵热水器性能的影响[J]. 制冷学报, 2017, 38(5): 65-70.
[19] YU Zhongyang, TAO Leren, YUAN Chaoyang, et al. Effects of control for electronic expansion valve on performance of air-source heat-pump water heater[J]. Journal of Refrigeration, 2017, 38(5): 65-70.
[20] APREA C, MASTRULLO R. Experimental evaluation of electronic and thermostatic expansion valves performances using R22 and R407C[J]. Applied Thermal Engineering, 2002, 22(2): 205-218.
[21] PARK C, CHO H, LEE Y, et al. Mass flow characteristics and empirical modeling of R22 and R410A flowing through electronic expansion valve[J]. International Journal of Refrigeration, 2007, 30(8): 1401-1407.
[22] CAO X, LI Z, SHAO L, et al. Refrigerant flow through electronic expansion valve: Experimental and neural network modeling[J]. Applied Thermal Engineering, 2016, 92(9): 210-218.
[23] CHEN T, CHA D A, KWON O K, et al. Experimental investigation on mass flow characteristics of R245fa through electronic expansion valve[J]. Applied Thermal Engineering, 2017, 125(6): 111-117.
[24] LIU C, HOU Y, MA J, et al. Experimental study on the CO2 flow characteristics through electronic expansion valves in heat pump[J]. International Journal of Refrigeration, 2016, 69(5): 106-113.
[25] MATEU R C, NAVARRO E J, MOTA B A, et al. Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery[J]. International Journal of Refrigeration, 2018, 90(6): 229-237.
[26] HU B, WU D, WANG L, et al. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Frontiers in Energy, 2017, 11(4): 493-502.
[27] MATEU R C, ARPAGAUS C, MOTA B A. Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: A comprehensive study[J]. Energy Conversion and Management, 2021, 229(5): 113752.
[28] WU D, HU B, WANG R. Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants[J]. Renewable Energy, 2018, 116(10): 775-785.
[29] 张川, 马善伟, 陈江平, 等. 电子膨胀阀制冷剂流量系数经验模型的试验研究[J]. 机械工程学报, 2005, 41(11): 63-69.
[29] ZHANG Chuan, MA Shanwei, CHEN Jiangping, et al. Experimental research on empirical model of flow coefficient of electronic expansion valve[J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 63-69.
[30] 马善伟, 张川, 陈江平, 等. 电子膨胀阀制冷剂流量系数的试验研究[J]. 上海交通大学学报, 2005, 39(2): 247-250.
[30] MA Shanwei, ZHANG Chuan, CHEN Jiangping, et al. Experimental research on electronic expansion valve refrigerant flow coefficient[J]. Journal of Shanghai Jiao Tong University, 2005, 39(2): 247-250.
[31] 张乐平, 张早校, 郁永章. 电子膨胀阀流量特性及选型的分析[J]. 流体机械, 2000, 28(12): 51-53.
[31] ZHANG Leping, ZHANG Zaoxiao, YU Yongzhang. The analysis of the flow characteristic and model selection about the electronic expansion valve[J]. Fluid Machinery, 2000, 28(12): 51-53.
[32] 李文清. 电子膨胀阀的性能特性分析[D]. 天津: 天津商业大学, 2020.
[32] LI Wenqing. Performance anlysis of electronic expansion valve[D]. Tianjin: Tianjin University of Commerce, 2020.
[33] 马善伟, 张川, 陈江平, 等. 电子膨胀阀制冷剂质量流量系数的试验研究[J]. 上海交通大学学报, 2006, 40(2): 282-285.
[33] MA Shanwei, ZHANG Chuan, CHEN Jiangping, et al. Experimental study on electronic expansion valve refrigerant flow coefficient[J]. Journal of Shanghai Jiao Tong University, 2006, 40(2): 282-285.
[34] 段远源, 张重华, 林鸿, 等. 环保制冷剂表面张力的预估方程[J]. 工程热物理学报, 2001, 23(3): 278-280.
[34] DUAN Yuanyuan, ZHANG Chonghua, LIN Hong, et al. The prediction of surface tension for HFCs and HCFCs[J]. Journal of Engineering Thermophysics, 2001, 23(3): 278-280.
[35] CHOI J, JIN T C, KIM Y. A generalized correlation for two-phase flow of alternative refrigerants through short tube orifices[J]. International Journal of Refrigeration, 2004, 27(4): 393-400.
文章导航

/