收稿日期: 2022-05-16
修回日期: 2022-06-18
录用日期: 2022-06-30
网络出版日期: 2022-11-10
基金资助
国家重点研发计划(2021YFB3400900);国家自然科学基金(52175346)
Numerical Simulation of Stamping-Spinning Hybrid Process for Aluminum Alloy Hemispherical Shells
Received date: 2022-05-16
Revised date: 2022-06-18
Accepted date: 2022-06-30
Online published: 2022-11-10
针对航天铝合金半球壳传统拉深成形精度差的问题,引入旋压成形,提出铝合金半球壳拉深-旋压复合成形新思路,充分发挥拉深成形和旋压成形的技术优势,实现该构件厚度均匀性好和贴模精度高的成形加工.建立了铝合金半球壳复合成形过程有限元仿真模型,实现了铝合金半球壳复合成形过程仿真,分析了不同旋压占比复合成形件的壁厚分布和贴模度变化规律.结果表明,旋压占比为50%的复合成形铝合金半球壳壁厚均匀性改善明显;强力旋压可改变成形构件应力状态,显著提高复合成形构件尺寸精度.同时,进行了直径1 m级铝合金半球壳复合成形工艺试验验证,实现了构件厚度均匀性和贴模精度的提高.
余小鹏, 王紫旻, 于忠奇, 罗益民, 郁立 . 铝合金半球壳拉深-旋压复合成形工艺仿真[J]. 上海交通大学学报, 2023 , 57(10) : 1329 -1336 . DOI: 10.16183/j.cnki.jsjtu.2022.165
Aimed at the poor accuracy in traditional deep drawing of aerospace aluminum alloy hemispherical shells, and by introducing metal spinning, a stamping-spinning hybrid process strategy for aluminum alloy hemispherical shells is proposed, which can achieve the forming processing of the formed component with a high thickness uniformity and high shape accuracy. The finite element simulation model of the hybrid process of the aluminum alloy hemispherical shell is developed, which realizes the simulation. In addition, the variation law of the wall thickness and shape fitting of the hemispherical shells formed by the hybrid process are analyzed. The simulation results show that the uniformity of wall thickness of the hemispherical shells formed by 50% stamping + 50% spinning is significantly improved. The shape accuracy of the component can be obviously improved by changing the stress state of the forming component by power spinning. Meanwhile, the hybrid process is verified by using an aluminum alloy hemispherical shell with a diameter of 1 m in processing test, which improves the thickness uniformity and the shape accuracy of the hemispherical shell.
Key words: aluminum alloy; thin-walled part; spinning; stamping; forming accuracy
[1] | 方宝东, 陈昌亚, 王伟, 等. 俄罗斯Fregat上面级[J]. 上海航天, 2012, 29(3): 34-37. |
[1] | FANG Baodong, CHEN Changya, WANG Wei, et al. Russian Fregat upper stage[J]. Aerospace Shanghai, 2012, 29(3): 34-37. |
[2] | 苑世剑, 刘伟, 徐永超, 等. 大尺度非均质壳体流体压力成形机制与缺陷控制方法[J]. 中国科学基金, 2021, 35(Sup.1): 192-196. |
[2] | YUAN Shijian, LIU Wei, XU Yongchao, et al. Mechanism and defects control of fluid pressure forming for large sized inhomogeneous shell[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(Sup.1): 192-196. |
[3] | YUAN S J. Fundamentals and processes of fluid pressure forming technology for complex thin-walled components[J]. Engineering, 2021, 7(3): 358-366. |
[4] | 刘伟, 徐永超, 苑世剑, 等. 薄壁曲面整体构件流体压力成形起皱机理与控制[J]. 机械工程学报, 2018, 54(9): 37-44. |
[4] | LIU Wei, XU Yongchao, YUAN Shijian, et al. Mechanism and controlling of wrinkles during hydroforming of integral thin-walled curved shell[J]. Journal of Mechanical Engineering, 2018, 54(9): 37-44. |
[5] | 周宇, 赵勇, 于忠奇, 等. 交叉内筋薄壁筒体错距旋压成形数值仿真[J]. 上海交通大学学报, 2022, 56(1): 62-69. |
[5] | ZHOU Yu, ZHAO Yong, YU Zhongqi, et al. Numerical simulation of stagger spinning of cylindrical part with cross inner ribs[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 62-69. |
[6] | 周磊, 杨国平, 刘凤财, 等. 超大直径贮箱箱底整体旋压成形技术[J]. 锻压技术, 2021, 46(3): 151-157. |
[6] | ZHOU Lei, YANG Guoping, LIU Fengcai, et al. Integral spinning forming technology of storage box bottom with super large diameter[J]. Forging and Stamping Technology, 2021, 46(3): 151-157. |
[7] | GAO P F, YAN X G, LI F G, et al. Deformation mode and wall thickness variation in conventional spinning of metal sheets[J]. International Journal of Machine Tools and Manufacture, 2022, 173: 03846. |
[8] | CHEN S W, ZHAN M, GAO P F, et al. A new robust theoretical prediction model for flange wrinkling in conventional spinning[J]. Journal of Materials Processing Technology. 2021, 288: 11684. |
[9] | 詹梅, 李志欣, 高鹏飞, 等. 铝合金大型薄壁异型曲面封头旋压成形研究进展[J]. 机械工程学报, 2018, 54(9): 86-96. |
[9] | ZHAN Mei, LI Zhixin, GAO Pengfei, et al. Advances in spinning of aluminum alloy large-sized thin-walled and special-curved surface head[J]. Journal of Mechanical Engineering, 2018, 54(9): 86-96. |
[10] | 宋晓飞, 詹梅, 蒋华兵, 等. 铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理[J]. 塑性工程学报, 2013, 20(1): 31-36. |
[10] | SONG Xiaofei, ZHAN Mei, JIANG Huabing, et al. Forming mechanism of defects in spinning of large complicated thin-wall aluminum alloy shells[J]. Journal of Plasticity Engineering, 2013, 20(1): 31-36. |
[11] | 杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10): 2534-2550. |
[11] | YANG He, ZHAN Mei, LI Tian, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (10): 2534-2550. |
[12] | 夏琴香. 特种旋压成形技术[M]. 北京: 科学出版社, 2017: 29-96. |
[12] | XIA Qinxiang. Special spinning forming technology[M]. Beijing: Science Press, 2017: 29-96. |
[13] | ZHANG Y Q, SHAN D B, XU W C, et al. Study on spinning process of a thin-walled aluminum alloy vessel head with small ratio of thickness to diameter[J]. Journal of Manufacturing Science and Engineering, 2010, 132: 014504. |
[14] | 林波, 谷建民, 周尚荣, 等. 超半球壳体多道次拉深旋压工艺研究[J]. 机械工程学报, 2011, 47(6): 86-91. |
[14] | LIN Bo, GU Jianmin, ZHOU Shangrong, et al. Research on process of multi-pass draw-spinning of hyper-hemispherical shell[J]. Journal of Mechanical Engineering, 2011, 47(6): 86-91. |
[15] | 杜陈阳, 孔庆帅, 赵亦希, 等. 薄壁球面构件普旋法兰起皱预测方法评价[J]. 上海交通大学学报, 2019, 53(4): 431-437. |
[15] | DU Chenyang, KONG Qingshuai, ZHAO Yixi, et al. Evaluation of flange wrinkling prediction methods of conventional spinning for thin-walled spherical components[J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 431-437. |
[16] | KONG Q S, YU Z Q, ZHAO Y X, et al. Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part[J]. Journal of Materials Processing Technology, 2017, 246: 56-68. |
[17] | 万旭敏, 赵亦希, 孔庆帅, 等. 旋压法兰起皱预测[J]. 上海交通大学学报, 2017, 51(11): 1312-1319. |
[17] | WAN Xumin, ZHAO Yixi, KONG Qingshuai, et al. Research on prediction of flange wrinkling in conventional spinning[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1312-1319. |
[18] | BIPLOV K R, YANNIS P. K, YOSHIO A, et al. A study of forming of thin-walled hemispheres by mandrel-free spinning of commercially pure aluminum tubes[J]. Journal of Manufacturing Processes, 2021, 64: 306-322. |
[19] | JIA Z, YE T, HAN Z R, et al. Study on die-less spinning of cone-cylinder combined hollow parts[J]. Journal of Materials Processing Technology. 2019, 271: 488-498. |
[20] | 宋金龙, 赵亦希, 于忠奇, 等. 铝合金封头旋压成形变厚度毛坯设计方法[J]. 上海交通大学学报, 2017, 51(11): 1304-1311. |
[20] | SONG Jinlong, ZHAO Yixi, YU Zhongqi, et al. Research on design method of variable thickness blanks for aluminum alloy head spinning forming[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1304-1311. |
[21] | GAN T, YU Z Q, ZHAO Y X, et al. Effects of backward path parameters on formability in conventional spinning of aluminum hemispherical parts[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 328-339. |
[22] | 宋金龙. 薄壁曲母线件多道次旋压成形精度研究[D]. 上海: 上海交通大学, 2017. |
[22] | SONG Jinlong. Study on forming quality of multi-pass spinning of thin-walled curvilinear generatrix parts[D]. Shanghai: Shanghai Jiao Tong University, 2017. |
/
〈 |
|
〉 |