机械与动力工程

具有多地形运动能力的双模块软体机器人

展开
  • 上海交通大学 机器人研究所,上海 200240
王宇轩(1998-),男,山西省太原市人,硕士生,研究方向为软体机器人设计.

收稿日期: 2021-08-04

  网络出版日期: 2022-11-03

基金资助

国家自然科学基金(51475300);国家自然科学基金(51875335);教育部联合基金(18GFA-ZZ07-171)

Dual Modular Soft Robot with Multi-Terrain Movement Ability

Expand
  • Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-08-04

  Online published: 2022-11-03

摘要

针对现有爬管机器人应用范围有限、运动场景单一和多地形运动机器人无法攀爬、空间运动受限等问题,提出一种新颖的具备多地形运动能力的双模块软体机器人,每个软体模块由四气室全向弯曲软体气动驱动器组成.通过建立全向弯曲软体驱动器的弯曲模型,分析了全向弯曲软体驱动器的变化规律;提出了一种新型的旋转运动模式,使该机器人能通过旋转运动模式在多种复杂环境中运动;提出基于脉冲宽度调制(PWM)的步态控制方法,使该机器人能够更加简单快速地实现多地形运动功能,并通过实验验证其可行性.实验结果表明,基于四气室全向弯曲软体驱动器的双模块软体机器人能够沿圆形管道、方形管道及不规则杆状物(人体小臂)进行垂直攀爬运动,爬行速度达到 11.7 mm/s,还能在平地、人造草皮、崎岖路面、斜坡等复杂地形进行快速移动,爬行速度达到 14.0 mm/s,弥补了现有爬管机器人和多地形运动机器人的不足.该模块化软体机器人能在多种地形下进行稳定快速运动,适应性强,在管道检测和复杂地形探测等方面具有潜在的应用价值.

本文引用格式

王宇轩, 刘朝雨, 王江北, 费燕琼 . 具有多地形运动能力的双模块软体机器人[J]. 上海交通大学学报, 2022 , 56(10) : 1388 -1396 . DOI: 10.16183/j.cnki.jsjtu.2021.290

Abstract

Aimed at the problems of limited application range, single movement scene, inability of climbing, and limited space movement of the multi-terrain movement robot, a novel dual module soft robot with the multi-terrain movement ability is proposed. Each soft module is composed of a four-chamber omnidirectional bending soft pneumatic actuator. By establishing the bending model of the omnidirectional bending soft actuator, the variation law of the omnidirectional bending soft actuator is analyzed. A new rotary movement mode is proposed, which enables the robot to move in a variety of complex environments in the rotary movement mode. A gait control method based on pulse width modulation (PWM) is proposed to make the robot realize the multi-terrain movement function more simply and quickly, and its feasibility is verified by experiments. The experimental results show that the dual modular soft robot based on the four-chamber omnidirectional bending soft actuator can climb vertically along circular pipes, square pipes, and irregular rods (human forearms), and the crawling speed can reach 11.7 mm / s. It can also move rapidly in complex terrain such as flat ground, artificial turf, rugged road surface, and slope, and the crawling speed can reach 14.0 mm/s, which overcomes the shortcomings of the existing pipe climbing robot and multi-terrain movement robot. The modular soft robot can move stably and quickly in a variety of terrain, and has a strong adaptability. It has a potential application value in pipeline detection and complex terrain detection.

参考文献

[1] XU F Y, JIANG F Y, JIANG Q S, et al. Soft actuator model for a soft robot with variable stiffness by coupling pneumatic structure and jamming mechanism[J]. IEEE Access, 2020, 8: 26356-26371.
[2] KALı N M A İ, AYGÜ L C, TÜRKMEN A,et al. Design, fabrication, and locomotion analysis of an untethered miniature soft quadruped, squad[J]. Robotics and Automation Letters, 2020, 5(3): 3854-3860
[3] BAO J L, CHEN W H, XU J. Kinematics modeling of a twisted and coiled polymer-based elastomer soft robot[J]. IEEE Access, 2019, 7: 136792-136800.
[4] XU J J, LIU B, LI K J, et al. Design and structure analysis of multi-legged bionic soft robot[C]//2020 International Conference on Advanced Mechatronic Systems. Hanoi, Vietnam: IEEE, 2020: 180-185.
[5] LU X J, WANG K, HU T T. Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators[J]. Bioinspiration & Biomimetics, 2020, 15(4): 046012.
[6] LI C, LAU G C, YUAN H, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields[J]. Science Robotics, 2020, 5(49): eabb9822.
[7] ZHANG Z Y, WANG X Q, WANG S T, et al. Design and modeling of a parallel-pipe-crawling pneumatic soft robot[J]. IEEE Access, 2019, 7: 134301-134317.
[8] YEH C Y, CHEN C Y, JUANG J Y. Soft hopping and crawling robot for in-pipe traveling[J]. Extreme Mechanics Letters, 2020, 39: 100854.
[9] 王羽麟. 可重构软体模块化机器人研制及其运动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[9] WANG Yulin. Development and motion control strategy research of soft reconfigurable modular robots[D]. Harbin:Harbin Institute of Technology, 2018.
[10] YAMADA S, HIROSE S, ENDO G, et al. R-Crank: Amphibious all terrain mobile robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, Korea (South): IEEE, 2016: 1067-1072.
[11] DROTMAN D, JADHAV S, KARIMI M, et al. 3D printed soft actuators for a legged robot capable of navigating unstructured terrain[C]//2017 IEEE International Conference on Robotics and Automation. Jeju, Korea (South): IEEE, 2017: 5532-5538.
[12] HAN S C, AN J, MOON H. A remotely controlled out-pipe climbing robot[C]//2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence. Jeju, Korea (South): IEEE, 2013: 126.
文章导航

/