机械与动力工程

基于全局特征描述子的激光SLAM回环检测方法

展开
  • 1.上海交通大学 机械与动力工程学院,上海 200240
    2.中煤科工集团上海有限公司,上海 201100
韩 超(1997-),男,浙江省宁波市人,硕士生,主要从事井下无人机定位技术研究.

收稿日期: 2021-06-11

  网络出版日期: 2022-11-03

Loop Closure Detection Method of Laser SLAM Based on Global Feature Descriptor

Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. China Coal Technology and Engineering Group Shanghai Co., Ltd., Shanghai 201100, China

Received date: 2021-06-11

  Online published: 2022-11-03

摘要

针对井下环境中设备巡检时定位误差随时间不断累积的问题,提出一种适用于激光同步定位和建图技术的基于点云全局特征描述子的回环检测方法.该方法利用曲率计算点云中特征点的特征向量,通过特征向量与中心点坐标系的角度分布和尺度分布关系构建点云全局特征描述子;使用部分特征点进行位姿变换的计算,提高计算效率.通过仿真实验和开源数据集实验对所提算法进行验证.实验结果表明,所提算法在定位精度和实时性上提升明显,可以有效解决定位算法在长时间运行过程中的累积误差和全局一致性差的问题.

本文引用格式

韩超, 陈敏, 黄宇昊, 赵明辉, 杜乾坤, 梁庆华 . 基于全局特征描述子的激光SLAM回环检测方法[J]. 上海交通大学学报, 2022 , 56(10) : 1379 -1387 . DOI: 10.16183/j.cnki.jsjtu.2021.202

Abstract

To solve the problem that localization error of the underground inspection system continues to accumulate over time, a loop closure detection algorithm based on point cloud global feature descriptor is proposed, which is suitable for laser simultaneous localization and mapping (SLAM). The feature vector of each point in point cloud is calculated by curvature, then the global feature descriptor of point cloud is constructed based on the angle distribution and scale distribution relationship between the feature vector and center point coordinate system. In addition, the pose transformation of two similar frames is calculated by feature point registration to improve computing efficiency. The proposed algorithm is verified by simulation experiments and open-source data experiments. The experimental results show that the proposed algorithm has a significant improvement in localization accuracy and real-time performance, which can effectively solve the problems of increased cumulative error and poor global consistency of the localization algorithm during long-term inspections.

参考文献

[1] 裴福俊, 李昊洋, 武玫. 基于分布式无味边缘粒子滤波的同步定位与地图构建[J]. 上海交通大学学报, 2014, 48(7): 987-992.
[1] PEI Fujun, LI Haoyang, WU Mei. Distributed unscented marginalized particle filter for simultaneous localization and mapping[J]. Journal of Shanghai Jiao Tong University, 2014, 48(7): 987-992.
[2] AZHARI F, KIELY S, SENNERSTEN C, et al. A comparison of sensors for underground void mapping by unmanned aerial vehicles[C]//Proceedings of the First International Conference on Underground Mining Technology. Perth, Australia: ACG, 2017: 419-430.
[3] 杨晶东, 彭坤, 顾浩楠, 等. 基于直线特征的机器人自主定位方法[J]. 上海交通大学学报, 2018, 52(9): 1120-1124.
[3] YANG Jingdong, PENG Kun, GU Haonan, et al. Autonomous localisation method based on linear feature for robots[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1120-1124.
[4] REN Z L, WANG L G, BI L. Robust GICP-based 3D LiDAR SLAM for underground mining environment[J]. Sensors, 2019, 19(13): 2915.
[5] LI M G, ZHU H, YOU S Z, et al. Efficient laser-based 3D SLAM for coal mine rescue robots[J]. IEEE Access, 2019, 7: 14124-14138.
[6] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[7] QIN T, LI P L, SHEN S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
[8] GALVEZ-LÓPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences[J]. IEEE Transactions on Robotics, 2012, 28(5): 1188-1197.
[9] SHAN T X, ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain:IEEE, 2018: 4758-4765.
[10] SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, USA: IEEE, 2021: 5135-5142.
[11] 柴梦娜, 刘元盛, 任丽军. 基于激光点云NDT特征的两步回环检测[J]. 激光与红外, 2020, 50(1): 17-24.
[11] CHAI Mengna, LIU Yuansheng, REN Lijun. Two-step loop closure detection based on laser point cloud NDT features[J]. Laser & Infrared, 2020, 50(1): 17-24.
[12] 李旭. 基于多线激光雷达建图的里程计优化及回环检测[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[12] LI Xu. Odometry optimization and loop detection based on multi-beam LiDAR mapping[D]. Harbin:Harbin Institute of Technology, 2019.
[13] ZHANG J, SINGH S. LOAM: Lidar odometry and mapping in real-time[EB/OL]. (2014-07-16) [2021-05-18]. http://www.roboticsproceedings.org/rss10/p07.pdf.
[14] LIU M, POMERLEAU F, COLAS F, et al. Normal estimation for pointcloud using GPU based sparse tensor voting[C]//2012 IEEE International Conference on Robotics and Biomimetics. Guangzhou, China: IEEE, 2012: 91-96.
[15] STIGLER S M. Francis galton’s account of the invention of correlation[J]. Statistical Science, 1989, 4(2): 73-79.
[16] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306-315.
[16] ZHANG Xiaoli, LI Xiongfei, LI Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion[J]. Acta Automatica Sinica, 2014, 40(2): 306-315.
[17] WEN W S, KAN Y C, HSU L T. Performance comparison of GNSS/INS integrations based on EKF and factor graph optimization[C]//Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation. Miami, Florida, USA: Institute of Navigation, 2019: 3019-3032.
[18] RATZ S, DYMCZYK M, SIEGWART R, et al. OneShot global localization: Instant LiDAR-visual pose estimation[C]//2020 IEEE International Conference on Robotics and Automation. Paris, France: IEEE, 2020: 5415-5421.
[19] DANG T, KHATTAK S, MASCARICH F, et al. Explore locally, plan globally: A path planning framework for autonomous robotic exploration in subterranean environments[C]//2019 19th International Conference on Advanced Robotics. Belo Horizonte, Brazil: IEEE, 2019: 9-16.
文章导航

/