新型电力系统与综合能源

基于石墨烯和氮化硼的高性能电容器

展开
  • 国网浙江省电力有限公司杭州供电公司, 杭州 310000
吴 靖(1977-),男,浙江省衢州市人,高级工程师,从事电力系统自动化的研究.

收稿日期: 2021-06-03

  网络出版日期: 2022-11-03

基金资助

国网浙江省电力有限公司科技项目(5211HZ1800V1)

High Performance Capacitors Based on Graphene and Boron Nitride

Expand
  • State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310000, China

Received date: 2021-06-03

  Online published: 2022-11-03

摘要

柔性全固态超级电容器(FASS)是可穿戴电子设备以及电力设备的能源供应,石墨烯纳米片具有独特的二维结构,较强的机械性能和优异的导电性,在纸片状柔性电极中应用广泛.基于简单石墨烯纳米片的FASS的双层电容性能的基本特征限制了其性能的提高和实际应用.研究了一种基于超大型石墨烯纳米片和超薄氮化硼(BN)纳米片的FASS,通过真空辅助过滤组装独立式超大型石墨烯纳米片/BN纳米片复合纸电极.新型超大型石墨烯纳米片/ BN纳米片纸的特有结构可以有效整合假电容BN纳米片和导电石墨烯的优点,从而在FASS中表现出出色的电化学性能.5000 次充放电后,FASS的最高面积比电容达到325.4 mF/cm2,并具有约86.2%的高容量保持率,且在85.7 W/kg的功率密度下具有22.8 W·h/kg (1 W·h=3.6 kJ)的高能量密度.

本文引用格式

吴靖, 谭海云, 史宇超, 侯伟宏, 汤明 . 基于石墨烯和氮化硼的高性能电容器[J]. 上海交通大学学报, 2022 , 56(10) : 1325 -1333 . DOI: 10.16183/j.cnki.jsjtu.2021.188

Abstract

Flexible all-solid-state supercapacitors (FASS) are energy supplies for wearable electronic devices and power devices. Graphene nanosheets have unique two-dimensional (2D) structures, strong mechanical properties, and an excellent electrical conductivity, which are widely used in paper-like flexible electrodes. The essential feature of the double-layer electric performance for the simple graphene nanosheet-based FASS restricts the improvement of their capacitive performance and practical applications. FASS based on the ultralarge graphene nanosheets and the ultrathin boron nitride (BN) nanosheets are investigated. The nacre-like structures could efficiently integrate both merits of pseudocapacitive BN nanoflakes and conducting graphene, thereby exhibiting an excellent electrochemical performance in FASS. After 5000 charge-discharge cycles, the highest areal specific capacitance of FASS reaches 325.4 mF/cm2, with a high capacity retention rate of about 86.2% and a high energy density of 22.8 W·h/kg (1 W·h=3.6 kJ) at a power density of 85.7 W/kg.

参考文献

[1] CHEN F H, WAN P B, XU H J, et al. Flexible transparent supercapacitors based on hierarchical nanocomposite films[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17865-17871.
[2] MORIARTY P, HONNERY D. Global renewable energy resources and use in 2050[M]//Managing global warming. Amsterdam: Elsevier, 2019: 221-235.
[3] KHARE V. Prediction, investigation, and assessment of novel tidal-solar hybrid renewable energy system in India by different techniques[J]. International Journal of Sustainable Energy, 2019, 38(5): 447-468.
[4] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489.
[5] MENG Q F, CAI K F, CHEN Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.
[6] LI X, TANG Y, SONG J H, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244.
[7] KSHETRI T, TRAN D T, NGUYEN D C, et al. Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor[J]. Chemical Engineering Journal, 2020, 380: 122543.
[8] PITKÄNEN O, JÄRVINEN T, CHENG H, et al. On-chip integrated vertically aligned carbon nanotube based super-and pseudocapacitors[J]. Scientific Reports, 2017, 7: 16594.
[9] GUAN X B, ZHAO L P, ZHANG P, et al. Self-supporting electrode of high conductive PEDOT: PSS/CNTs coaxial nanocables wrapped by MnO2 nanosheets[J]. ChemistrySelect, 2019, 4(7): 2009-2017.
[10] YI F, REN H Y, SHAN J Y, et al. Wearable energy sources based on 2D materials[J]. Chemical Society Reviews, 2018, 47(9): 3152-3188.
[11] WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
[12] XIA H C, XU Q, ZHANG J N. Recent progress on two-dimensional nanoflake ensembles for energy storage applications[J]. Nano-Micro Letters, 2018, 10(4): 1-30.
[13] LIU L L, NIU Z Q, CHEN J. Design and integration of flexible planar micro-supercapacitors[J]. Nano Research, 2017, 10(5): 1524-1544.
[14] DA Y M, LIU J X, ZHOU L, et al. Engineering 2D architectures toward high-performance micro-supercapacitors[J]. Advanced Materials, 2019, 31(1): 1802793.
[15] SOSTAK P, PADOVAN C. Neurological complications after solid organ and bone marrow transplantation[J]. Aktuelle Neurologie, 2002, 29(6): 282-287.
[16] SHI X Y, PEI S F, ZHOU F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility[J]. Energy & Environmental Science, 2019, 12(5): 1534-1541.
[17] YOUSEFI N, LU X, ELIMELECH M, et al. Environmental performance of graphene-based 3D macrostructures[J]. Nature Nanotechnology, 2019, 14(2): 107-119.
[18] ZHU Y W, JI H X, CHENG H M, et al. Mass production and industrial applications of graphene materials[J]. National Science Review, 2017, 5(1): 90-101.
[19] LEMINE A S, ZAGHO M M, ALTAHTAMOUNI T M, et al. Graphene a promising electrode material for supercapacitors—A review[J]. International Journal of Energy Research, 2018, 42(14): 4284-4300.
[20] LIU X X, CHAO D L, SU D P, et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage[J]. Nano Energy, 2017, 37: 108-117.
[21] LI P P, JIN Z Y, PENG L L, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels[J]. Advanced Materials, 2018, 30(18): 1800124.
[22] LI P W, TAO C G, WANG B Y, et al. Preparation of graphene oxide-based ink for inkjet printing[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(1): 713-718.
[23] YANG Y C, HOU H S, ZOU G Q, et al. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2018, 11(1): 16-33.
[24] BELLANI S, PETRONI E, DEL RIO CASTILLO A E, et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors[J]. Advanced Functional Materials, 2019, 29(14): 1807659.
[25] LI J T, SOLLAMI DELEKTA S, ZHANG P P, et al. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing[J]. ACS Nano, 2017, 11(8): 8249-8256.
[26] XUE Q, SUN J F, HUANG Y, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017, 13(45): 1701827.
[27] ZHANG L, DEARMOND D, ALVAREZ N T, et al. Flexible micro-supercapacitor based on graphene with 3D structure[J]. Small, 2017, 13(10): 1603114.
[28] LIU N S, GAO Y H. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture[J]. Small, 2017, 13(45): 1701989.
[29] ZHOU F, HUANG H B, XIAO C H, et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors[J]. Journal of the American Chemical Society, 2018, 140(26): 8198-8205.
[30] SHAO Y L, LI J M, LI Y G, et al. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films[J]. Mater Horiz, 2017, 4(6): 1145-1150.
[31] LIU J H, LIU X W. Two-dimensional nanoarchitectures for lithium storage[J]. Advanced Materials, 2012, 24(30): 4097-4111.
文章导航

/