新型电力系统与综合能源

随机环境下电动汽车充电实时管理与优化控制算法

展开
  • 1.广西师范大学 电子与信息工程学院, 广西壮族自治区 桂林 541004
    2.广西电网有限责任公司电力科学研究院,南宁 530000
刘迪迪(1980-),副教授,博士,主要研究方向为电力系统控制、随机网络优化.

收稿日期: 2021-12-07

  修回日期: 2022-02-12

  网络出版日期: 2022-10-31

基金资助

国家自然科学基金项目(62061006);国家自然科学基金项目(12162005)

Management and Optimal Control Algorithm for Electric Vehicle Charging in Random Environment

Expand
  • 1. College of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, Guangxi Zhuang Autonomous Region, China
    2. Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530000, China

Received date: 2021-12-07

  Revised date: 2022-02-12

  Online published: 2022-10-31

摘要

电动汽车的规模日益壮大,对其充电行为进行自适应管理成为亟待解决的问题.从充电服务商的角度出发,协同可再生能源和储能设备,并计及电网的时变电价和电动汽车充电可容忍时延,基于Lyapunov优化理论提出随机环境下的电动汽车充电实时管理和优化控制算法,旨在最大化充电服务商的利益,即最小化购电成本.理论性能分析证明,所提算法无需可再生能源出力、充电需求和时变电价的先验统计信息,就能使优化目标趋近最优值.仿真结果表明,该算法可以有效减少充电服务商的购电成本,相比于基准贪婪算法可降低27.3%.

本文引用格式

刘迪迪, 杨益菲, 杨玉荟, 邹艳丽, 王小华, 黎新 . 随机环境下电动汽车充电实时管理与优化控制算法[J]. 上海交通大学学报, 2023 , 57(1) : 1 -9 . DOI: 10.16183/j.cnki.jsjtu.2021.499

Abstract

With the increasing scale of electric vehicles (EVs), the adaptive management of its charging behavior becomes an urgent problem to be solved. From the point of view of charging service provider, an online management algorithm for EV charging is proposed based on the Lyapunov optimization theory under the random environment in this paper, considering renewable sources energy, storage equipment, time-varying electricity price, and the tolerable delay of EV, with an aim of maximizing the benefits of charging service providers (i.e., minimizing the cost of electricity purchased). The performance of the proposed algorithm is analyzed to verify that it can achieve near-optimal optimization results without any a priori statistical information about the system inputs (renewable energy generation, charging demand, and time-varying electricity price). The simulation results show that the proposed algorithm can effectively reduce the economic cost by 27.3% compared with the benchmark algorithm.

参考文献

[1] 吉斌, 孙绘, 梁肖, 等. 面向“双碳”目标的碳电市场融合交易探讨[J]. 华电技术, 2021, 43(6): 33-40.
[1] JI Bin, SUN Hui, LIANG Xiao, et al. Discussion on convergent trading of the carbon and electricity market on the path to carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6): 33-40.
[2] 何方波, 赵明, 王楷, 等. 考虑需求响应的源荷协调多目标优化方法[J]. 电网与清洁能源, 2021, 37(10): 51-58.
[2] HE Fangbo, ZHAO Ming, WANG Kai, et al. A multi objective optimization method of source load coordination considering demand response[J]. Power System and Clean Energy, 2021, 37(10): 51-58.
[3] 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194-207.
[3] JIANG Haiyang, DU Ershun, ZHU Guiping, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(19): 194-207.
[4] 佟晶晶, 温俊强, 王丹, 等. 基于分时电价的电动汽车多目标优化充电策略[J]. 电力系统保护与控制, 2016, 44(1): 17-23.
[4] TONG Jingjing, WEN Junqiang, WANG Dan, et al. Multi-objective optimization charging strategy for plug-in electric vehicles based on time-of-use price[J]. Power System Protection and Control, 2016, 44(1): 17-23.
[5] 杨健维, 苟方杰, 黄宇, 等. 基于不确定性测度的居民小区电动汽车充电分时电价制定策略[J]. 电网技术, 2018, 42(1): 96-102.
[5] YANG Jianwei, GOU Fangjie, HUANG Yu, et al. Residential area electric vehicle charging pricing strategy based on uncertainty measure[J]. Power System Technology, 2018, 42(1): 96-102.
[6] 赵俊华, 文福拴, 杨爱民, 等. 电动汽车对电力系统的影响及其调度与控制问题[J]. 电力系统自动化, 2011, 35(14): 2-10.
[6] ZHAO Junhua, WEN Fushuan, YANG Aimin, et al. Impacts of electric vehicles on power systems as well as the associated dispatching and control problem[J]. Automation of Electric Power Systems, 2011, 35(14): 2-10.
[7] 张博, 唐巍, 蔡永翔, 等. 面向高比例户用光伏消纳的储能系统与通信网络协同规划[J]. 电网技术, 2018, 42(10): 3161-3169.
[7] ZHANG Bo, TANG Wei, CAI Yongxiang, et al. Collaborative configuration of energy storage systems and communication networks for accommodation of high-penetration residential PVs[J]. Power System Technology, 2018, 42(10): 3161-3169.
[8] 胡澄, 刘瑜俊, 徐青山, 等. 面向含风电楼宇的电动汽车优化调度策略[J]. 电网技术, 2020, 44(2): 564-572.
[8] HU Cheng, LIU Yujun, XU Qingshan, et al. Optimal scheduling strategy for electric vehicles in buildings with wind power[J]. Power System Technology, 2020, 44(2): 564-572.
[9] 陈中, 刘艺, 陈轩, 等. 考虑移动储能特性的电动汽车充放电调度策略[J]. 电力系统自动化, 2020, 44(2): 77-85.
[9] CHEN Zhong, LIU Yi, CHEN Xuan, et al. Charging and discharging dispatching strategy for electric vehicles considering characteristics of mobile energy storage[J]. Automation of Electric Power Systems, 2020, 44(2): 77-85.
[10] 张良, 孙成龙, 蔡国伟, 等. 基于PSO算法的电动汽车有序充放电两阶段优化策略[J]. 中国电机工程学报, 2022, 42(5): 1837-1852.
[10] ZHANG Liang, SUN Chenglong, CAI Guowei, et al. Two-stage optimization strategy for coordinated charging and discharging of EVs based on PSO algorithm[J]. Proceedings of the CSEE, 2022, 42(5): 1837-1852.
[11] 李志伟, 赵书强, 刘应梅. 电动汽车分布式储能控制策略及应用[J]. 电网技术, 2016, 40(2): 442-450.
[11] LI Zhiwei, ZHAO Shuqiang, LIU Yingmei. Control strategy and application of distributed electric vehicle energy storage[J]. Power System Technology, 2016, 40(2): 442-450.
[12] NOUR M, SAID S M, ALI A, et al. Smart charging of electric vehicles according to electricity price[C]//2019 International Conference on Innovative Trends in Computer Engineering. Aswan, Egypt: IEEE, 2019: 432-437.
[13] JIN C R, SHENG X, GHOSH P. Optimized electric vehicle charging with intermittent renewable energy sources[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(6): 1063-1072.
[14] 吴洲洋, 艾欣, 胡俊杰. 电动汽车聚合商参与调频备用的调度方法与收益分成机制[J]. 电网技术, 2021, 45(3): 1041-1050.
[14] WU Zhouyang, AI Xin, HU Junjie. Dispatching and income distributing of electric vehicle aggregators’ participation in frequency regulation[J]. Power System Technology, 2021, 45(3): 1041-1050.
[15] WANG W, CHENG Y. Optimal charging scheduling for electric vehicles considering the impact of renewable energy sources[C]//2020 5th Asia Conference on Power and Electrical Engineering. Chengdu, China: IEEE, 2020: 1150-1154.
[16] 王行行, 赵晋泉, 王珂, 等. 考虑用户满意度和配网安全的电动汽车多目标双层充电优化[J]. 电网技术, 2017, 41(7): 2165-2172.
[16] WANG Xingxing, ZHAO Jinquan, WANG Ke, et al. Multi-objective Bi-level electric vehicle charging optimization considering user satisfaction degree and distribution grid security[J]. Power System Technology, 2017, 41(7): 2165-2172.
[17] CHENG Q F, CHEN L, SUN Q Y, et al. A smart charging algorithm based on a fast charging station without energy storage system[J]. CSEE Journal of Power and Energy Systems, 2021, 7(4): 850-861.
[18] 徐智威, 胡泽春, 宋永华, 等. 基于动态分时电价的电动汽车充电站有序充电策略[J]. 中国电机工程学报, 2014, 34(22): 3638-3646.
[18] XU Zhiwei, HU Zechun, SONG Yonghua, et al. Coordinated charging strategy for PEV charging stations based on dynamic time-of-use tariffs[J]. Proceedings of the CSEE, 2014, 34(22): 3638-3646.
[19] 刘迪迪, 林基明, 王俊义, 等. 蜂窝网络中能量收集基站的能量协作算法[J]. 上海交通大学学报, 2018, 52(3): 365-372.
[19] LIU Didi, LIN Jiming, WANG Junyi, et al. The algorithm of energy cooperation in cellular networks with energy-harvesting base stations[J]. Journal of Shanghai Jiao Tong University, 2018, 52(3): 365-372.
[20] NEELY M J. Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3(1): 1-211.
文章导航

/