收稿日期: 2022-05-20
修回日期: 2022-07-27
录用日期: 2022-08-18
网络出版日期: 2022-10-27
基金资助
国家自然科学基金面上项目(52171293);国家自然科学基金青年项目(51809029);大连市支持高层次人才创新创业项目(2020RQ009);大连市科技创新基金重点学科重大项目(2020JJ25CY016);辽宁省自然科学基金博士科研启动计划项目(2019-BS-025);中央高校基本科研业务费专项资金资助(3132022112)
Optimization Design of New Bionic Propeller
Received date: 2022-05-20
Revised date: 2022-07-27
Accepted date: 2022-08-18
Online published: 2022-10-27
对导边变形的仿生螺旋桨的水动力性能优化设计提出一种新颖的方法.基于仿生学原理与参数化建模的方法,将座头鲸前鳍的凹凸结构应用于螺旋桨导边,即在螺旋桨导边迎流区依据指数衰减曲线和正弦函数曲线将标准光滑导边进行类似座头鲸鳍突起结构状的凹凸变形,获得的导边凹凸的仿生螺旋桨.分别对指数衰减型仿生桨与正弦函数型仿生桨进行水动力性能、空泡性能以及噪声性能数值模拟.选出其中性能较优的螺旋桨,然后将基于仿真设计(SBD)技术引入新型仿生螺旋桨优化设计中,以控制导边变形的指数衰减曲线形状的参数为优化设计变量,以母型桨的转矩作为约束条件,选取敞水效率为目标函数,采用Sobol与T-Search优化算法,构建基于指数衰减曲线的仿生螺旋桨优化研究系统.研究结果表明:将座头鲸前鳍的凹凸结构应用于螺旋桨导边对螺旋桨的空泡性能与噪声性能有所提高,但对于螺旋桨敞水性能的提高不显著,验证了本研究所建立的仿生桨水动力性能优化设计方法是有效可靠的,为仿生螺旋桨的性能数值计算及构型优化设计提供了一定的理论依据和技术指导.
关键词: 仿生螺旋桨; 指数衰减曲线; 正弦函数曲线; 基于仿真设计(SBD)技术; 优化算法
吴春晓, 卢雨, 刘社文, 顾朱浩, 邵思雨, 邵武, 李闯 . 新型仿生螺旋桨优化设计[J]. 上海交通大学学报, 2023 , 57(11) : 1421 -1431 . DOI: 10.16183/j.cnki.jsjtu.2022.174
A novel method for optimal design of hydrodynamic performance of bionic propeller with a deformable leading edge is proposed. Based on the bionics principle and method of parameterized modeling, the fore-fin concave-convex structure of humpback whales is applied to the propeller leading edge, the leading edge in the propeller to meet flow region according to the exponential decay curve and the standard sine curve smooth leading edge for similar humpback fins protuberant structure of concave and convex deformation, and the leading edge of concave and convex bionic propeller. The hydrodynamic performance, the cavitation performance, and the noise performance of the exponential decay bionic propeller and the sinusoidal function bionic propeller were simulated respectively. The propeller with a better performance is selected, and the simulation based design (SBD) technology is introduced into the optimization design of the new bionic propeller. The parameters controlling the shape of the exponential attenuation curve of the guide edge deformation are taken as optimization design variables, the torque of the parent propeller is taken as the constraint condition, the open water efficiency is selected as the objective function, and the optimization algorithm of Sobol and T-Search is adopted. A bionic propeller optimization system based on the exponential decay curve is constructed. The results show that the application of the concave and convex structure of the humpback whale fore-fin to the guide edge of the propeller improves the cavitation performance and noise performance of the propeller, but the improvement of the open water performance of the propeller is not particularly significant. It is verified that the hydrodynamic performance optimization design method of the bionic propeller established in this paper is effective and reliable, which provides a certain theoretical basis and technical guidance for the performance numerical calculation and configuration optimization design of the bionic propeller.
[1] | FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51-60. |
[2] | PEDRO H, KOBAYASHI M. Numerical study of stall delay on humpback whale flippers[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: American Institute of Aeronautics and Astronautics, 2008: 1-8. |
[3] | NIEROP E, ALBEN S, BRENNER M. How bumps on whale flippers delay stall: An aerodynamic model[C]// Physical Review Letters. Massachusetts, USA: Amer Physical Soc, 2008: 1-5. |
[4] | SANDBERG R, JONES L. Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations[J]. Sound and Vibration, 2011, 330 (16): 3818-3831. |
[5] | CHONG T, VATHYLAKIS A. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge[J]. Sound and Vibration, 2015, 354 (13): 65-90. |
[6] | LEON C A, MARTINEZ R, RAGNI D, et al. Effect of trailing edge serration-flow misalignment on airfoil noise emissions[J]. Sound and Vibration, 2017, 405: 19-33. |
[7] | CAMPANA E F, PERI D, TAHARA Y, et al. Numerical optimization methods for ship hydrodynamic design[J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 118: 1-42. |
[8] | 姜彭, 张超, 张宇. 基于STAR-CCM+的螺旋桨水动力性能分析[J]. 中国修船, 2020, 33(1): 43-46. |
[8] | JIANG Peng, ZHANG Chao, ZHANG Yu. Hydrodynamic performance analysis of propeller based on STAR-CCM+[J]. China Ship Repair, 2020, 33(1): 43-46. |
[9] | 安邦, 朱汉华, 范世东, 等. 某AU型螺旋桨的三维建模及其性能分析[J]. 中国修船, 2017, 30(3): 48-52. |
[9] | AN Bang, ZHU Hanhua, FAN Shidong, et al. Three-dimensional modeling and performance analysis of an AU propeller[J]. China Ship Repair, 2017, 30(3): 48-52. |
[10] | 武珅, 曾志波, 徐良浩. 柔性随边螺旋桨水动力和空泡性能模型实验研究[J]. 水动力学研究与进展(A辑), 2020, 35(6): 675-680. |
[10] | WU Shen, ZENG Zhibo, XU Lianghao. Experimental study on hydrodynamic and cavitation performance of flexible edge-following propellers[J]. Hydrodynamics Research and Progress (Series A), 2020, 35(6): 675-680. |
[11] | ZHAI S C, LIU D C, HAN Y B. Numerical simulation of cavitation pressure of propeller with pre-rotation guide wheel[J]. Ship Mechanics, 2021, 25(10): 1292-1301. |
[12] | 齐江辉, 郭健, 郑亚雄, 等. 七叶大侧斜螺旋桨空泡特性及梢涡演化数值模拟研究[J]. 推进技术, 2020, 41(11): 2605-2612. |
[12] | QI Jianghui, GUO Jian, ZHENG Yaxiong, et al. Numerical simulation of cavitation characteristics and tip vortex evolution of seven-blade large skew propeller[J]. Propulsion Technology, 2020, 41(11): 2605-2612. |
[13] | HUANG L, CHEN Y H, SONG M T. Experimental study on propeller cavitation and noise characteristics[J]. Ship Mechanics, 2021, 25(6): 681-688. |
[14] | 黄哲科. 螺旋桨桨叶变形对水动力噪声的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
[14] | HUANG Zheke. Study on the influence of propeller blade deformation on hydrodynamic noise[D] Harbin: Harbin Institute of Technology, 2021. |
[15] | 吴佳峰, 黄迅. 螺旋桨中的流动噪声问题[J]. 空气动力学学报, 2022, 40(3): 10-21. |
[15] | WU Jiafeng, HUANG Xun. Flow-induced noise problems of propellers[J]. Acta Aerodynamica Sinica, 2022, 40(3): 10-21. |
[16] | 张正骞, 李巍, 杨晨俊. 仿生导管桨水动力性能研究[J]. 水动力学研究与进展(A辑), 2020, 35(1): 31-36. |
[16] | ZHANG Zhengqian, LI Wei, YANG Chenjun. Study on hydrodynamic performance of bionic ducted propeller[J]. Hydrodynamics Research and Progress (Series A), 2020, 35(1): 31-36. |
[17] | 张帅, 朱锡, 周振龙. 桨叶变形对螺旋桨敞水性能影响及对策研究[J]. 华中科技大学学报(自然科学版), 2013, 41(8): 116-120. |
[17] | ZHANG Shuai, ZHU Xi, ZHOU Zhenlong. Influence of blade deformation on open water performance of propeller and its countermeasures[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(8): 116-120. |
[18] | 韩用波, 董郑庆, 吕江, 等. 优化理论在螺旋桨水动力设计中的应用[J]. 中国造船, 2019, 60(1): 52-59. |
[18] | HAN Yongbo, DONG Zhengqing, Lü Jiang, et al. Application of optimization theory in hydrodynamic design of propeller[J]. China Shipbuilding, 2019, 60(1): 52-59. |
[19] | SALTELLI A, BOLADO R. An alternative way to compute Fourier amplitude sensitivity test (FAST)[J]. Computational Statistics & Data Analysis, 1998, 26(4): 445-460. |
/
〈 |
|
〉 |