电子束物理气相沉积热障涂层隔热性能的磷光寿命在线测量
收稿日期: 2022-07-01
修回日期: 2022-08-12
录用日期: 2022-08-31
网络出版日期: 2022-10-24
基金资助
国家自然科学基金(51905268)
Evaluation of Thermal Insulation Performance of EB-PVD YSZ Thermal Barrier Coatings by Phosphorescence Lifetime Online Measurement
Received date: 2022-07-01
Revised date: 2022-08-12
Accepted date: 2022-08-31
Online published: 2022-10-24
精确在线测量热障涂层(TBCs)在热梯度环境下的真实隔热效果对热障涂层的设计以及开发具有重要意义.采用电子束物理气相沉积(EB-PVD)制备了含Eu掺杂的氧化钇部分稳定氧化锆(YSZ:Eu)表层、YSZ中间层与Dy掺杂YSZ(YSZ:Dy)底层的磷光传感热障涂层.利用磷光信号的热淬灭特性对温度梯度环境下YSZ涂层表面以及黏结层/YSZ层界面温度进行在线测量,对EB-PVD YSZ热障涂层的真实隔热效果进行评估.结果表明:平均厚度为113 μm的YSZ涂层在高温温度梯度下能够实现的平均温降为66.5 ℃,在温度区间为400~700 ℃内的平均热导率为(0.87±0.15) W/(m·K),略小于传统激光脉冲法的测量值 (0.95±0.02) W/(m·K).上述结果证实了磷光在线测温技术用于热障涂层隔热效果测量的可靠性,为热障涂层隔热效果的实时监控提供了一种有效方法.
刘郑红, 余亚丽, 程伟伦, 李牧之, 杨丽霞, 赵晓峰, 彭迪, 牟仁德, 刘德林 . 电子束物理气相沉积热障涂层隔热性能的磷光寿命在线测量[J]. 上海交通大学学报, 2023 , 57(9) : 1186 -1195 . DOI: 10.16183/j.cnki.jsjtu.2022.252
Precise measurement of the thermal insulation performance of thermal barrier coatings (TBCs) under the thermal gradient environment is important for the design and development of TBCs. A phosphorescent sensor TBC which contains an Eu doped yttria-stabilized zirconia (YSZ:Eu) surface layer, a YSZ intermediate layer, and a YSZ:Dy bottom layer, is designed and prepared by electron beam physical vapor deposition (EB-PVD). Based on the thermal quenching characteristics of phosphorescence signal, the surface temperature of the YSZ coating and the interface temperature of the bond-coat/YSZ layer are measured online in a temperature gradient environment, and the real thermal insulation effect of the EB-PVD YSZ thermal barrier coating is evaluated. The results show that the EB-PVD YSZ coating with a thickness of 113 μm can achieve an average temperature decrease of 66.5 ℃. The average thermal conductivity of the coating is (0.87±0.15) W/(m·K) in the temperature range between 400 and 700 ℃, which is slightly lower than the value (0.95±0.02) W/(m·K) obtained by using the traditional laser flash method. The above results validate the reliability of online phosphorescence temperature measurement technique, and provide an effective method to monitor the thermal insulation effect of TBCs in real time.
[1] | THAKARE J G, PANDEY C, MAHAPATRA M M, et al. Thermal barrier coatings—A state of the art review[J]. Metals and Materials International, 2021, 27(7): 1947-1968. |
[2] | 金圣皓, 王博翔, 赵长颖. 热障涂层热物性研究进展[J]. 航空制造技术, 2021, 64(13): 59-76. |
[2] | JIN Shenghao, WANG Boxiang, ZHAO Changying. Research on status of thermal properties of thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2021, 64(13): 59-76. |
[3] | BAKAN E, VA?EN R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties[J]. Journal of Thermal Spray Technology, 2017, 26(6): 992-1010. |
[4] | 赵娟利, 杨岚, 张成冠, 等. 热障涂层材料研究进展[J]. 现代技术陶瓷, 2020, 41(3): 148-170. |
[4] | ZHAO Juanli, YANG Lan, ZHANG Chengguan, et al. Recent progress in thermal barrier coatings[J]. Advanced Ceramics, 2020, 41(3): 148-170. |
[5] | BINDER C, FEUK H, RICHTER M. Phosphor thermometry for in-cylinder surface temperature measurements in diesel engines[J]. Journal of Luminescence, 2020, 226: 117415. |
[6] | YANG L X, PENG D, ZHAO C S, et al. Evaluation of the in-depth temperature sensing performance of Eu-and Dy-doped YSZ in air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2017, 316: 210-218. |
[7] | 周益春, 杨丽, 刘志远, 等. 涡轮叶片热障涂层隔热效果的研究进展[J]. 中国材料进展, 2020, 39(10): 707-722. |
[7] | ZHOU Yichun, YANG Li, LIU Zhiyuan, et al. Research progress on insulation performance of thermal barrier coatings on turbine blade[J]. Materials China, 2020, 39(10): 707-722. |
[8] | 张小伍, 徐佰明. 电子束物理气相沉积热障涂层隔热性能研究[J]. 汽轮机技术, 2020, 62(5): 399-400. |
[8] | ZHANG Xiaowu, XU Baiming. Thermal insulating properties of YSZ TBC deposited by EB-PVD[J]. Turbine Technology, 2020, 62(5): 399-400. |
[9] | LIU Z Y, ZHU W, YANG L, et al. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane[J]. International Journal of Thermal Sciences, 2020, 158: 106552. |
[10] | 郝洪亮, 龙芸, 杨希刚, 等. 高温服役过程热障涂层隔热性能演变规律[J]. 动力工程学报, 2020, 40(8): 671-677. |
[10] | HAO Hongliang, LONG Yun, YANG Xigang, et al. Insulation property evolution of thermal barrier coatings during high temperature services[J]. Journal of Chinese Society of Power Engineering, 2020, 40(8): 671-677. |
[11] | 刘建华, 刘永葆, 贺星, 等. 涡轮叶片多层结构热障涂层隔热效果分析[J]. 航空发动机, 2017, 43(4): 1-6. |
[11] | LIU Jianhua, LIU Yongbao, HE Xing, et al. Analyzing of thermal insulation of thermal barrier coatings of a turbine vane[J]. Aeroengine, 2017, 43 (4): 1-6. |
[12] | FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 333-341. |
[13] | FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Application of an industrial sensor coating system on a Rolls-Royce jet engine for temperature detection[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135 (1): 012101. |
[14] | ALLISON S W, BESHEARS D L, CATES M R, et al. Luminescence of YAG: Dy and YAG: Dy, Er crystals to 1700 ℃[J]. Measurement Science and Technology, 2020, 31(4): 044001. |
[15] | JENKINS T P, HESS C F, ALLISON S W, et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology, 2020, 31(4): 044003. |
[16] | ELDRIDGE J I, WOLFE D E. Monitoring thermal barrier coating delamination progression by upconversion luminescence imaging[J]. Surface and Coatings Technology, 2019, 378: 124923. |
[17] | ELDRIDGE J I. Luminescence decay-based Y2O3: Er phosphor thermometry: Temperature sensitivity governed by multiphonon emission with an effective phonon energy transition[J]. Journal of Luminescence, 2019, 214: 116535. |
[18] | PENG D, YANG L X, CAI T, et al. Phosphor-doped thermal barrier coatings deposited by air plasma spray for in-depth temperature sensing[J]. Sensors (Basel, Switzerland), 2016, 16(10): 1490. |
[19] | YANG L X, PENG D, SHAN X, et al. “Oxygen quenching” in Eu-based thermographic phosphors: Mechanism and potential application in oxygen/pressure sensing[J]. Sensors and Actuators B: Chemical, 2018, 254: 578-587. |
[20] | LI Y Z, CAI T, YANG L X, et al. Effect of oxygen partial pressure on the phosphorescence of different lanthanide ion (Ln3+)-doped yttria-stabilised zirconia[J]. Sensors and Actuators B: Chemical, 2020, 308: 127666. |
[21] | KNAPPE C, LINDéN J, ABOU NADA F, et al. Investigation and compensation of the nonlinear response in photomultiplier tubes for quantitative single-shot measurements[J]. The Review of Scientific Instruments, 2012, 83(3): 034901. |
[22] | GENTLEMAN M M. High temperature sensing of thermal barrier materials by luminescence[D]. Santa Barbara, USA: University of California, 2006. |
[23] | HUI Y, ZHAO Y, ZHAO S M, et al. Fluorescence of Eu3+ as a probe of phase transformation of zirconia[J]. Journal of Alloys and Compounds, 2013, 573: 177-181. |
[24] | 单水维. Y2O3稳定ZrO2陶瓷材料导热性能的研究[D]. 包头: 内蒙古科技大学, 2007. |
[24] | SHAN Shuiwei. Study on thermal conduction properties of yttria-stabilized zirconia ceramic material[D]. Baotou: Inner Mongolia University of Science & Technology, 2007. |
/
〈 |
|
〉 |