机械与动力工程

采用叠片法的黄铜低温接触热阻测量

展开
  • 1.上海交通大学 制冷与低温工程研究所,上海 200240
    2.上海精密计量测试研究所, 上海 201109
沈 逸(1999-),硕士生,从事低温传热和测试研究.

收稿日期: 2021-10-08

  修回日期: 2021-09-22

  网络出版日期: 2022-09-30

基金资助

上海市科学技术委员会研发平台专项(19DZ2291500)

Measurement of Cryogenic Thermal Contact Resistance of Brass by Lamination Method

Expand
  • 1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Precision Metrology and Testing Research Institute, Shanghai 201109, China

Received date: 2021-10-08

  Revised date: 2021-09-22

  Online published: 2022-09-30

摘要

以往低温接触热阻测量研究主要集中于液氮温区及以上,77 K以下温区的固体接触热阻数据鲜有报道.基于RDK-408D2型二级G-M低温制冷机,采用叠片法测量不同粗糙度和螺栓转矩下黄铜样品在10~30 K温区的接触热阻,并讨论不同因素对接触热阻的影响程度.结果表明:该温区黄铜接触面接触热阻值在6.89×10-4~ 1.86×10-2 m2·W/K之间,接触面粗糙度越小、温度越高、螺栓转矩越大,接触热阻就越小,结论与常规定性认识相符.该低温实验数据能够为相关低温应用设计中的连接热阻计算提供一定支持.

本文引用格式

沈逸, 曹家兴, 黄永华 . 采用叠片法的黄铜低温接触热阻测量[J]. 上海交通大学学报, 2023 , 57(1) : 76 -83 . DOI: 10.16183/j.cnki.jsjtu.2021.394

Abstract

Prior studies on cryogenic thermal contact resistance (TCR) measurement mainly focus on liquid nitrogen temperature region and above. There are limited solid TCR data in the lower temperature region. The present measurement is based on an RDK-408D2 two-stage G-M cryogenic refrigerator. By using the laminated method, the TCR data of brass samples in the temperature range of 10—30 K at different roughnesses and preloads are measured and the influence of different factors on TCR is discussed. The results show that the TCR of the brass contact surface in this temperature zone is between 6.89×10-4 and 1.86×10-2 m2·W/K. With a smaller roughness of the contact surface, higher temperature, and greater pre-tightening force, the TCR becomes smaller. This behavior is consistent with the conventional qualitative understanding. The above cryogenic experimental data can provide certain support for the calculation of TCR for related cryogenic application design.

参考文献

[1] FUJII Y, MORITANI A, NAKAI J. Photoacoustic spectroscopy theory for multi-layered samples and interference effect[J]. Japanese Journal of Applied Physics, 1981, 20(2): 361.
[2] BAUMANN J, TILGNER R. Determining photothermally the thickness of a buried layer[J]. Journal of Applied Physics, 1985, 58(5): 1982-1985.
[3] SALAZAR A, SáNCHEZ-LAVEGA A. Thermal diffusivity measurements using linear relations from photothermal wave experiments[J]. Review of Scientific Instruments, 1994, 65(9): 2896-2900.
[4] KWON O, SHI L, MAJUMDAR A. Scanning thermal wave microscopy (STWM)[J]. Journal of Heat Transfer, 2003, 125: 156-163.
[5] LARSON K B, KOYAMA K. Measurement by the flash method of thermal diffusivity, heart capacity, and thermal conductivity in two-layer composite samples[J]. Journal of Applied Physics, 1968, 39(9): 4408-4416.
[6] LE NILIOT C, GALLET P. Infrared thermography applied to the resolution of inverse heat conduction problems: Recovery of heat line sources and boundary conditions[J]. Revue Générale De Thermique, 1998, 37(8): 629-643.
[7] 周孑民, 朱再兴, 谢东江, 等. 常功率平面热源法测试耐火材料热物性的研究[J]. 中南大学学报(自然科学版), 2011, 42(5): 1467-1472.
[7] ZHOU Jiemin, ZHU Zaixing, XIE Dongjiang, et al. Thermal physical property of refractory material measured by plane heat source method with constant heat rate[J]. Journal of Central South University (Science and Technology), 2011, 42(5): 1467-1472.
[8] CAHILL D G. Thermal conductivity measurement from 30 to 750 K: The 3ω method[J]. Review of Scientific Instruments, 1990, 61(2): 802-808.
[9] YOUNG D A, THOMSEN C, GRAHN H T, et al. Heat flow in glasses on a picosecond timescale[C]//Phonon Scattering in Condensed Matter V. Berlin, Heidelberg: Springer-Verlag, 1986: 49-51.
[10] CHEN M J, LI Q, ZHANG P. Experimental investigation of high temperature thermal contact resistance of thin disk samples using infrared camera in vacuum condition[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119749.
[11] BI D M, CHEN H X, YE T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures[J]. Cryogenics, 2012, 52(7/8/9): 403-409.
[12] 彭小方, 石零, 王建, 等. 低温下Cu-Cu固体间界面热阻的激光光热法研究[J]. 低温与特气, 2006, 24(5): 34-37.
[12] PENG Xiaofang, SHI Ling, WANG Jian, et al. Experimental research on the thermal contact resistance by photothermal measurement between Cu-Cu in low temperature[J]. Low Temperature and Specialty Gases, 2006, 24(5): 34-37.
[13] 应济, 贾昱, 陈子辰, 等. 粗糙表面接触热阻的理论和实验研究[J]. 浙江大学学报(自然科学版), 1997, 31(1): 104-109.
[13] YING Ji, JIA Yu, CHEN Zichen, et al. Theoretical and experimental research on the contact thermal resistance between real surface[J]. Journal of Zhejiang University (Natural Science), 1997, 31(1): 104-109.
[14] 刘菊. 固体界面接触热阻及导热系数测量的实验研究[D]. 武汉: 华中科技大学, 2011.
[14] LIU Ju. The experimental research on measurement of thermal contact resistance of two contacted solids and thermal conductivity[D]. Wuhan: Huazhong University of Science and Technology, 2011.
[15] 韩雪峰. 航天器常用固体材料接触热阻测量系统的研究[D]. 长春: 长春工业大学, 2016.
[15] HAN Xuefeng. Research on the measurement system of thermal contact resistance of aerospace solid materials[D]. Changchun: Changchun University of Technology, 2016.
[16] 王安良, 马松阳. 一种测量板间接触热阻的新方法[J]. 工程热物理学报, 2017, 38(11): 2393-2398.
[16] WANG Anliang, MA Songyang. A new method for measuring the thermal contact resistance between plates[J]. Journal of Engineering Thermophysics, 2017, 38(11): 2393-2398.
[17] YU J E, YEE A L, SCHWALL R E. Thermal conductance of Cu/Cu and Cu/Si interfaces from 85 K to 300 K[J]. Cryogenics, 1992, 32(7): 610-615.
[18] 徐烈, 张涛, 赵兰萍, 等. 双热流法测定低温真空下固体界面的接触热阻[J]. 低温工程, 1999(4): 185-189.
[18] XU Lie, ZHANG Tao, ZHAO Lanping, et al. Using double heat flux meter method to measure the thermal contact resistance of solid material at low temperature and vacuum[J]. Cryogenics, 1999(4): 185-189.
[19] KUMAR S S, RAMAMURTHI K. Thermal contact conductance of pressed contacts at low temperatures[J]. Cryogenics, 2004, 44(10): 727-734.
[20] XU R P, FENG H D, ZHAO L P, et al. Experimental investigation of thermal contact conductance at low temperature based on fractal description[J]. International Communications in Heat and Mass Transfer, 2006, 33(7): 811-818.
[21] POWELL R L, ROGERS W M, RODER H M. Thermal conductivities of copper and copper alloys[C]//Advances in Cryogenic Engineering. Boston, MA, USA: Springer, 1960: 166-171.
文章导航

/