机械与动力工程

转速拓展下喷油策略对柴油机低负荷预混燃烧的影响

展开
  • 1.南京工业大学 机械与动力工程学院, 南京 211816
    2.天津大学 内燃机燃烧学国家重点实验室, 天津 300072
范 超(1997-),硕士生,研究方向为内燃机燃烧与排放控制.

收稿日期: 2021-10-29

  修回日期: 2021-11-23

  录用日期: 2021-12-07

  网络出版日期: 2022-09-05

基金资助

国家自然科学基金青年资助项目(51806097);江苏省研究生科研与实践创新计划项目(SJCX22_0428)

Effect of Injection Strategy on Low Load Premixed Combustion of a Diesel Engine in Engine Speed Extension

Expand
  • 1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
    2. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

Received date: 2021-10-29

  Revised date: 2021-11-23

  Accepted date: 2021-12-07

  Online published: 2022-09-05

摘要

利用试验结合数值模拟的手段研究重型柴油机低负荷转速拓展下,多次喷油策略对预混充量压燃(PCCI)燃烧的影响,得出重型柴油机低负荷喷雾燃烧的普适优化方向:喷油定时应与燃烧室形状配合,使油、气、室三者结合,最大程度地利用燃烧室的形状优势;转速升高后采用多次喷油策略能够克服喷油持续期延长带来的喷油速率降低、油气混合程度降低等缺陷.优化喷油策略后,低转速单次喷油工况下NOx排放量降低38%,碳烟排放量降低1个数量级,指示热效率提高8.66%;中转速单次喷油工况下,在指示热效率保持不变的情况下NOx排放量降低59.3%,碳烟排放量降低70%;高转速单次喷油工况下,指示热效率和NOx排放量略有升高,碳烟排放量显著降低.此外,研究发现,随着转速的提升,多次喷油策略对指示热效率与排放量的影响逐渐增强,多次喷油策略的优化效果相对低转速时更加明显.

本文引用格式

范超, 鹿盈盈, 刘一泽 . 转速拓展下喷油策略对柴油机低负荷预混燃烧的影响[J]. 上海交通大学学报, 2023 , 57(8) : 1055 -1066 . DOI: 10.16183/j.cnki.jsjtu.2021.433

Abstract

In this paper, the influence of the multiple injection strategy on premixed charge compression ignition (PCCI) combustion of a heavy-duty diesel engine in low load speed extension is studied experimentally and numerically, and the general optimization direction of low-load spray combustion of a heavy-duty diesel engine is obtained. The injection timing should match the shape of the combustion chamber, so that the oil, gas, and chamber are combined to make full use of the advantage of the shape of the combustion chamber. As the speed increases, the multi-injection strategy can overcome the defects such as the decrease of injection rate and the decrease of oil-gas mixing degree caused by the extension of injection duration. For single injection at a low speed, through optimizing the injection strategy, the NOx emission is reduced by 38%, the soot emission is decreased by one order of magnitude, and the indicated thermal efficiency is increased by 8.66%. For single injection at a medium speed, the indicated thermal efficiency remains unchanged, the NOx emission is reduced by 59.3%, and the soot emission is reduced by 70%. For single injection at a high speed, the thermal efficiency and the NOx emission are increased slightly while the soot emission is decreased significantly. In addition, it is found that with the increase of speed, the influence of the multiple injection strategy on indicated thermal efficiency and emissions is gradually increased, and the optimization effect of the multiple injection strategy is more obvious than that of low speed.

参考文献

[1] DAS P, SUBBARAO P M V, SUBRAHMANYAM J P. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy[J]. Energy Conversion and Management, 2015, 95: 248-258.
[2] LU Y Y, SU W H. Effects of the injection parameters on the premixed charge compression ignition combustion and the emissions in a heavy-duty diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(7): 915-926.
[3] 梅德清, 涂立志, 雎志轩, 等. 不同喷油正时的柴油机PCCI燃烧过程数值模拟[J]. 江苏大学学报(自然科学版), 2018, 39(1): 7-13.
[3] MEI Deqing, TU Lizhi, JU Zhixuan, et al. Numerical simulation of PCCI combustion in diesel engine with different injection timing[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(1): 7-13.
[4] JAIN A, SINGH A P, AGARWAL A K. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine[J]. Applied Energy, 2017, 190: 658-669.
[5] DOLL U, BARRO C, TODINO M, et al. Impact of a split injection strategy on mixing, ignition and combustion behavior in premixed charge compression ignition combustion[J]. Fuel, 2021, 294: 120511.
[6] LI M H, LIU G F, LIU X R, et al. Performance of a direct-injection natural gas engine with multiple injection strategies[J]. Energy, 2019, 189: 116363.
[7] D’AMBROSIO S, FERRARI A. Potential of multiple injection strategies implementing the after shot and optimized with the design of experiments procedure to improve diesel engine emissions and performance[J]. Applied Energy, 2015, 155: 933-946.
[8] MORENO C J, STENLAAS O, TUNESTAL P. Influence of small pilot on main injection in a heavy-duty diesel engine[C]//WcxTM17:Sae World Congress Experience. Warrendale, PA, USA: SAE, 2017.
[9] 王军, 金毅, 张幽彤, 等. 柴油机典型工况的电控喷油器多次喷射分配[J]. 汽车工程, 2020, 42(2): 157-163.
[9] WANG Jun, JIN Yi, ZHANG Youtong, et al. Multiple injection distribution of electronically controlled injector in typical working conditions of diesel engine[J]. Automotive Engineering, 2020, 42(2): 157-163.
[10] SU T F, PATTERSON M A, REITZ R D, et al. Experimental and numerical studies of high pressure multiple injection sprays[C]//International Congress & Exposition. Warrendale, PA, USA: SAE, 1996: 93-104.
[11] O’ROURKE P J. Collective drop effects on vaporizing liquid sprays[D]. Princeton, USA: Princeton University, 1981.
[12] SCHMIDT D P, RUTLAND C J. A new droplet collision algorithm[J]. Journal of Computational Physics, 2000, 164(1): 62-80.
[13] LIU H, YAN Y A, JIA M, et al. An analytical solution for wall film heating and evaporation[J]. International Communications in Heat and Mass Transfer, 2017, 87: 125-131.
[14] Convergent Science. CONVERGE manual (v2.4)[DB/OL]. (2018-08-14)[2021-06-29]. https//convergecfd.com.
[15] SOM S, WANG Z, LIU W, et al. Comparison of different chemical kinetic models for biodiesel combustion[C]//ASME 2013 Internal Combustion Engine Division Fall Technical Conference. Dearborn, Michigan, USA: ASME, 2013:V002T02A004.
[16] FLOWER W L, HANSON R K, KRUGER C H. Kinetics of the reaction of nitric oxide with hydrogen[J]. Symposium (International) on Combustion, 1975, 15(1): 823-832.
[17] NISHIDA K, HIROYASU H. Simplified three-dimensional modeling of mixture formation and combustion in a DI diesel engine[J]. SAE Transactions, 1989, 98: 276-293.
[18] HAN Z, REITZ R. Turbulence modeling of internal combustion engines using RNG κ-ε models[J]. Combustion Science and Technology, 1995, 106(4/5/6): 267-295.
[19] LI B Z, BRINK A, MIKKO H. Simplified model for determining local heat flux boundary conditions for slagging wall[J]. Energy and Fuels, 2009, 23(4): 3418-3422.
[20] Convergent Science. CONVERGE v2.1.0 theory manual[DB/OL]. (2013-07-15)[2021-06-29]. https//convergecfd.com.
[21] JU Y G. Understanding cool flames and warm flames[J]. Proceedings of the Combustion Institute, 2021, 38(1): 83-119.
[22] CURRAN H J. Developing detailed chemical kinetic mechanisms for fuel combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 57-81.
[23] 生态环境部,国家市场监督管理总局. 重型柴油车污染物排放限值及测量方法: GB 17691—2018[S]. 北京: 中国环境科学出版社, 2018.
[23] Ministry of Ecological Environment, State Market Regulatory Administration. Limits and measurement methods for emissions from diesel fuelled heavy-duty vehicles(CHINA VI): GB 17691—2018[S]. Beijing: China Environment Science Press, 2018.
[24] 张磊, 苏铁熊, 冯云鹏, 等. 多次喷油策略下喷油间隔对双对置发动机性能和排放的数值分析[J]. 测试技术学报, 2018, 32(1): 20-25.
[24] ZHANG Lei, SU Tiexiong, FENG Yunpeng, et al. Numerical investigation of the effects of injection interval of split injection strategies on combustion and emission in an opposed-piston, opposed-cylinder (OPOC)two-stroke diesel engine[J]. Journal of Test and Measurement Technology, 2018, 32(1): 20-25.
文章导航

/