制导、导航与控制

高超声速飞行器线性变参数一体化式控制律设计

展开
  • 1.西北工业大学 自动化学院,西安 710072
    2.北京空天技术研究所,北京 100074
杨 庶(1988-),男,江苏省徐州市人,副教授,从事飞行力学与飞行控制研究.

收稿日期: 2022-06-01

  网络出版日期: 2022-09-05

基金资助

国家自然科学基金(62003271)

Linear Parameter-Varying Integrated Control Law Design for a Hypersonic Vehicle

Expand
  • 1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
    2. Beijing Aerospace Technology Institute, Beijing 100074, China

Received date: 2022-06-01

  Online published: 2022-09-05

摘要

针对高超声速飞行器的三维航迹控制问题,采用线性变参数(LPV)输出反馈控制和极点配置理论,基于高度-水平航迹控制概念,在马赫数包线内设计高超声速飞行器一体化式LPV控制律.该控制律不区分常规飞行控制律的内外控制回路,根据速度、高度、侧滑角和偏航角指令对飞行器纵向和横航向运动进行综合控制,在L2诱导范数意义下实现飞行器三维航迹的鲁棒最优控制.在地心地固参考系内建立高超声速飞行器的数学模型,考虑地球自转、地球扁率、地球引力二阶简谐效应对飞行器运动特性的影响.通过数值仿真检验LPV控制律的控制性能,仿真结果表明:高超声速飞行器闭环系统具有D-稳定性,能够在典型机动中保持良好的航迹控制性能,并且在扰动和测量噪声下具有良好的鲁棒性.

本文引用格式

杨庶, 钱云霄, 杨婷 . 高超声速飞行器线性变参数一体化式控制律设计[J]. 上海交通大学学报, 2022 , 56(11) : 1427 -1437 . DOI: 10.16183/j.cnki.jsjtu.2022.190

Abstract

A linear parameter-varying (LPV) integrated control law is designed for a hypersonic vehicle to achieve trajectory control based on an altitude-horizontal trajectory control concept. The LPV output-feedback control theory and pole placement techniques are employed to design parameters of the control law within a Mach number envelope. Such a control law performs integrated control for longitudinal and lateral-directional dynamics of the vehicle, free from the scheme of inner and outer control loops of classical flight controls and ensuring robust and optimal control performance in the sense of L2-induced norm. A mathematical model of the hypersonic vehicle is developed in the Earth-centered-Earth-fixed reference frame. Earth rotation, Earth oblateness, and the second order harmonic perturbations of Earth are considered in the model. Numerical simulations are conducted to examine the performance of the LPV controller. The simulation results indicate that the closed-loop system of the hypersonic vehicle achieves D-stability. The LPV control law achieves a good performance in vehicle trajectory control and has sufficient robustness with respect to perturbations and sensor noise.

参考文献

[1] 刘晓东, 黄万伟, 王丹晔, 等. 带终端角度约束的飞行器三维制导控制一体化设计[J]. 航天控制, 2016, 34(2): 3-8.
[1] LIU Xiaodong, HUANG Wanwei, WANG Danye, et al. Aircraft three-dimensional integrated guidance and control design containing terminal angle constraints[J]. Aerospace Control, 2016, 34(2): 3-8.
[2] 路遥, 贾志强, 刘晓东, 等. 高超声速飞行器无在线求导backstepping 控制方法[J]. 宇航学报, 2022, 43(1): 103-110.
[2] LU Yao, JIA Zhiqiang, LIU Xiaodong, et al. Backstepping control for hypersonic vehicles without online differentiation[J]. Journal of Astronautics, 2022, 43(1): 103-110.
[3] 秦伟伟, 郑志强, 刘刚, 等. 高超声速飞行器的LPV鲁棒变增益控制[J]. 系统工程与电子技术, 2011, 33(6): 1327-1331.
[3] QIN Weiwei, ZHENG Zhiqiang, LIU Gang, et al. Robust variable gain control for hypersonic vehicles based on LPV[J]. Systems Engineering and Electronics, 2011, 33(6): 1327-1331.
[4] 张健松, 马清华, 黎海青, 等. 高超声速飞行器鲁棒纵向控制技术研究[J]. 弹箭与制导学报, 2020, 40(2): 19-22.
[4] ZHANG Jiansong, MA Qinghua, LI Haiqing, et al. Robust longitudinal control method for hypersonic vehicle[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2): 19-22.
[5] BU X W, QI Q. Fuzzy optimal tracking control of hypersonic flight vehicles via single-network adaptive critic design[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(1): 270-278.
[6] 唐博, 席建祥, 刘太阳, 等. 俯冲段高超声速飞行器有限时间协同制导律设计[J]. 北京航空航天大学学报, 2021, 47(10): 2105-2117.
[6] TANG Bo, XI Jianxiang, LIU Taiyang, et al. Design of finite-time cooperative guidance law for hypersonic vehicles in dive phase[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2105-2117.
[7] WANG J H, CHENG L, CAI Y W, et al. Low-order diving integrated guidance and control for hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 91: 96-109.
[8] BAO C Y, WANG P, TANG G J. Integrated guidance and control for hypersonic morphing missile based on variable span auxiliary control[J]. International Journal of Aerospace Engineering, 2019, 2019: 6413410.
[9] 蔡光斌, 赵阳, 张胜修, 等. 高超声速飞行器鲁棒多目标线性变参数控制[J]. 兵工学报, 2019, 40(11): 2229-2240.
[9] CAI Guangbin, ZHAO Yang, ZHANG Shengxiu, et al. Robust multi-objective linear parameter-varying control for hypersonic vehicle[J]. Acta Armamentarii, 2019, 40(11): 2229-2240.
[10] 黄宜庆, 江岩, 李志琨, 等. 高超声速飞行器的增益调度切换控制[J]. 控制工程, 2019, 26(3): 405-411.
[10] HUANG Yiqing, JIANG Yan, LI Zhikun, et al. Output feedback gain-scheduled switching control for hypersonic vehicles[J]. Control Engineering of China, 2019, 26(3): 405-411.
[11] 郑亚龙, 江驹, 徐文萤. 基于最优选点数的多胞LPV建模及其鲁棒控制研究[J]. 舰船电子工程, 2019, 39(11): 56-60.
[11] ZHENG Yalong, JIANG Ju, XU Wenying. Uncertain polytopic LPV modelling based on the number of optimal equilibrium points and robust control[J]. Ship Electronic Engineering, 2019, 39(11): 56-60.
[12] 黄显林, 葛东明. 吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制[J]. 宇航学报, 2010, 31(7): 1789-1797.
[12] HUANG Xianlin, GE Dongming. Robust linear parameter-varying control for longitudinal maneuvering flight of air-breathing hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(7): 1789-1797.
[13] STEVENS B L, LEWIS F L, JOHNSON E N. Aircraft control and simulation[M]. 3rd ed. Hoboken, USA: John Wiley & Sons, Inc, 2015.
[14] SHAUGHNESSY J D, PINCKNEY S Z, MCMINN J D, et al. Hypersonic vehicle simulation model: Winged-cone configuration[R]. USA: NASA, 1990.
[15] GREENWOOD D T. Advanced dynamics[M]. New York, USA: Cambridge University Press, 2003.
[16] MARCOS A, BALAS G J. Development of linear-parameter-varying models for aircraft[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 218-228.
[17] DULLERUD G E. PAGANINI F G. A course in robust control theory: A convex approach[M]. New York, USA: Springer, 2000.
[18] APKARIAN P, ADAMS R J. Advanced gain-scheduling techniques for uncertain systems[J]. IEEE Transactions on Control Systems Technology, 1998, 6(1): 21-32.
[19] CHILALI M, GAHINET P. H design with pole placement constraints: An LMI approach[J]. IEEE Transactions on Automatic Control, 1996, 41(3): 358-367.
文章导航

/