新型电力系统与综合能源

一种低压输入高压输出的两级式逆变器高效率调制方法

展开
  • 1.湖南工程学院 电气与信息工程学院,湖南 湘潭 411104
    2.中车株洲电力机车研究所有限公司 电气技术与材料工程研究院,湖南 株洲412001
旷永红(1979-),博士,从事大功率变流和谐波控制研究.

收稿日期: 2022-04-06

  修回日期: 2022-05-17

  录用日期: 2022-06-17

  网络出版日期: 2022-08-26

基金资助

国家自然科学基金(52077189);湖南省自然科学基金(2021JJ30185)

A High-Efficiency Modulation Method of Two-Stage Inverter with Low Voltage Input and High Voltage Output

Expand
  • 1. College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
    2. Institute of Electrical Technology and Material Engineering, CRRC Zhuzhou Electric Locomotive Research Institute Co., Ltd., Zhuzhou 412001, Hunan, China

Received date: 2022-04-06

  Revised date: 2022-05-17

  Accepted date: 2022-06-17

  Online published: 2022-08-26

摘要

车载逆变器向着小型化、轻量化和高功率密度的趋势发展.针对现有输入电压为DC 110 V 的车载单相逆变器采用Boost电路和全桥逆变两级独立调制而存在效率低、功率密度小等问题,提出了一种Boost电路和全桥逆变两级协同式调制方法.该方法根据输入电压与输出电压绝对值的大小关系使Boost电路和全桥逆变电路处于不同的工作方式,优化绝缘栅双极型晶体管开关状态和二极管通断状态,从而降低逆变器的损耗,提升逆变器效率.同时,该方法能减少全桥逆变电路的输出谐波,从而缩小滤波器件的尺寸,提升逆变器功率密度.设计制作一台2.75 kV·A车载逆变器样机,实验验证了所提方法的正确性和可行性.

本文引用格式

旷永红, 谢伟, 田莉, 林愿, 周细凤 . 一种低压输入高压输出的两级式逆变器高效率调制方法[J]. 上海交通大学学报, 2023 , 57(7) : 878 -886 . DOI: 10.16183/j.cnki.jsjtu.2022.102

Abstract

Miniaturization, lightweight, and high power density are development trends of vehicle-mounted inverters. The existing vehicle mounted single-phase inverter with DC 110 V input voltage adopts two-stage independent modulation between Boost circuit and full bridge inverter circuit, which has the problems of low efficiency and low power density. To solve these problems, a two-stage cooperative modulation between Boost circuit and full-bridge inverter circuit is studied. According to the relationship between the absolute value of input voltage and output voltage, the Boost circuit and the full-bridge inverter operate with different modes in the proposed method, which optimizes the insulated gate bipolar transistor(IGBT) switching state and diode on-off state to reduce the loss of the inverter and improve the efficiency of the inverter. At the same time, the output harmonics of the full-bridge inverter circuit can be reduced to decrease the size of the filter and improve the power density of the inverter. A 2.75 kV·A prototype is designed and fabricated. Experiments are conducted to verify the correctness and feasibility of the proposed method.

参考文献

[1] 刘博如. 基于PLECS的车载SiC单相逆变器损耗研究[J]. 电力电子技术, 2019, 53(8): 118-120.
[1] LIU Boru. Research on loss of vehicle SiC single-phase inverter based on PLECS[J]. Power Electronics, 2019, 53(8): 118-120.
[2] 张丹, 王杰. 混合供电型不对称多电平逆变器的研究[J]. 上海交通大学学报, 2018, 52(2): 207-213.
[2] ZHANG Dan, WANG Jie. An asymmetry cascaded multilevel inverter with hybrid power supply[J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 207-213.
[3] 谢江华, 张方华, 张帅, 等. 基于载波移相控制的高功率密度双降压式全桥逆变器[J]. 电工技术学报, 2016, 31(13): 1-9.
[3] XIE Jianghua, ZHANG Fanghua, ZHANG Shuai, et al. A high power density dual-buck full-bridge inverter based on carrier phase-shifted control[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 1-9.
[4] 陈丹江, 叶银忠. 三电平逆变器容错拓扑的多载波控制策略[J]. 上海交通大学学报, 2015, 49(6): 907-912.
[4] CHEN Danjiang, YE Yinzhong. Multi-carrier control strategy for a three-level inverter tolerant topology[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 907-912.
[5] 何宁, 李雅文, 杜成瑞, 等. 高功率密度碳化硅MOSFET软开关三相逆变器损耗分析[J]. 电源学报, 2017, 15(6): 1-9.
[5] HE Ning, LI Yawen, DU Chengrui, et al. Loss analysis of high power density SiC-MOSFET zero-voltage-switching three-phase inverter[J]. Journal of Power Supply, 2017, 15(6): 1-9.
[6] 丰瀚麟, 肖华锋, 谢少军. 反激型电流源光伏并网逆变器的损耗分析与优化设计[J]. 太阳能学报, 2011, 32(6): 814-820.
[6] FENG Hanlin, XIAO Huafeng, XIE Shaojun. Losses analysis and optimal design of flyback-type current soutce grid-connected pv inverter[J]. Acta Energiae Solaris Sinica, 2011, 32(6): 814-820.
[7] 李宗鉴, 王俊, 余佳俊, 等. SiC JMOS和SiC DMOS在Si/SiC混合器件单相逆变器中的应用研究[J]. 中国电机工程学报, 2019, 39(19): 5674-5682.
[7] LI Zongjian, WANG Jun, YU Jiajun, et al. Application of SiC JMOS and SiC DMOS in Si/SiC hybrid switch based single-phase inverter[J]. Proceedings of the CSEE, 2019, 39(19): 5674-5682.
[8] 杨勇, 郭小强, 张纯江. 高频SiC单相逆变器调制策略研究[J]. 电力电子技术, 2017, 51(12): 23-25.
[8] YANG Yong, GUO Xiaoqiang, ZHANG Chunjiang. Modulation strategy for high-frequency SiC single-phase inverter[J]. Power Electronics, 2017, 51(12): 23-25.
[9] 饶沛南, 谢伟, 杨奎, 等. 一种新型低地板车用轻量化高频辅助变流器的研制[J]. 机车电传动, 2017(1): 25-30.
[9] RAO Peinan, XIE Wei, YANG Kui, et al. Development of a novel high frequency auxiliary converter for low-floor vehicle[J]. Electric Drive for Locomotives, 2017(1): 25-30.
[10] 陈杰, 刁利军, 朱恺, 等. 三相四线制地铁辅助逆变器控制策略研究[J]. 铁道学报, 2012, 34(4): 34-38.
[10] CHEN Jie, DIAO Lijun, ZHU Kai, et al. Research on control strategy of three-phase four-wire metro auxiliary converter[J]. Journal of the China Railway Society, 2012, 34(4): 34-38.
[11] 李东, 王喜乐, 李岩, 等. 基于全碳化硅的车辆辅助逆变器应用研究[J]. 电力电子技术, 2020, 54(10): 47-49.
[11] LI Dong, WANG Xile, LI Yan, et al. Application research on car auxiliary inverter based on SiC MOSFET[J]. Power Electronics, 2020, 54(10): 47-49.
[12] 胡光铖, 陈敏, 陈烨楠, 等. 基于SiC MOSFET户用光伏逆变器的效率分析[J]. 电源学报, 2014, 12(6): 53-58.
[12] HU Guangcheng, CHEN Min, CHEN Yenan, et al. Efficiency analysis of household PV inverter based on SiC MOSFET[J]. Journal of Power Supply, 2014, 12(6): 53-58.
[13] 王强, 李兵, 王天施, 等. 新型单相全桥谐振直流环节逆变器[J]. 电子学报, 2020, 48(12): 2493-2496.
[13] WANG Qiang, LI Bing, WANG Tianshi, et al. Novel single-phase full-bridge inverter with a resonant DC link[J]. Acta Electronica Sinica, 2020, 48(12): 2493-2496.
[14] 孙鹏菊, 龚灿, 杜雄, 等. 一种大功率交流变流器直流母线电容等效串联电阻的在线监测方法[J]. 中国电机工程学报, 2017, 37(17): 5134-5142.
[14] SUN Pengju, GONG Can, DU Xiong, et al. An online monitoring scheme of equivalent series resistance for DC-link capacitor of high-power AC converter[J]. Proceedings of the CSEE, 2017, 37(17): 5134-5142.
[15] 李婧, 袁立强, 谷庆, 等. 一种基于损耗模型的双有源桥DC-DC变换器效率优化方法[J]. 电工技术学报, 2017, 32(14): 66-76.
[15] LI Jing, YUAN Liqiang, GU Qing, et al. An efficiency optimization method in dual active bridge DC-DC converter based on loss model[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 66-76.
[16] QIAN J R, KHAN A, BATARSEH I. Turn-off switching loss model and analysis of IGBT under different switching operation modes[C]// Proceedings of IECON’95-21st Annual Conference on IEEE Industrial Electronics. Orlando, USA: IEEE, 1995: 240-245.
[17] BLAABJERG F, JAEGER U, MUNK-NIELSEN S, et al. Comparison of NPT and PT IGBT-devices for hard switching applications[C]// Proceedings of 1994 IEEE Industry Applications Society Annual Meeting. Denver, USA: IEEE, 1994: 1174-1181.
[18] 石祥花, 谢少军. 中点箝位型光伏并网逆变器调制策略及效率对比[J]. 南京航空航天大学学报, 2014, 46(1): 65-71.
[18] SHI Xianghua, XIE Shaojun. Modulation strategies and efficiency comparison of NPC grid-tied PV inverters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(1): 65-71.
[19] 陈梦颖, 王议锋, 涂世杰, 等. 高频双Buck全桥逆变器的功率损耗分布分析[J]. 电力系统及其自动化学报, 2019, 31(2): 119-125.
[19] CHEN Mengying, WANG Yifeng, TU Shijie, et al. Analysis of power loss distribution for high-frequency dual-buck full-bridge inverter[J]. Proceedings of the CSU-EPSA, 2019, 31(2): 119-125.
文章导航

/