基于船厂分段时空数据的分段状态识别及转运监测
收稿日期: 2021-08-05
修回日期: 2021-08-27
网络出版日期: 2022-08-23
基金资助
国家重点研发计划(2018YFB1700600);国家自然科学基金(51675299);北京市自然科学基金(3182012)
Ship Block State Identification and Transfer Monitoring Based on Time-Site Data of Blocks
Received date: 2021-08-05
Revised date: 2021-08-27
Online published: 2022-08-23
船舶分段转运保障了分段在各个工艺之间的有序流动,但消耗了大量成本.船厂管理者需要监测实际转运过程,特别是监测因堆场内分段互相阻挡和返工产生的两类非生产性转运.S船厂由于场地紧张必须一场多用,现有监测技术难以从分段时空数据中获取分段状态,进而难以实现两类非生产性转运的监测.针对这个问题,研究了转运过程中分段状态的时序转化规律和耗时特征,建立了4个隐马尔可夫模型并使用有监督的方法学习其参数,通过维特比算法实现了分段状态识别,其在测试集上的准确率最高达到了93.5%.将其中1个隐马尔可夫模型应用于船厂分段时空数据,实现了船厂的两类非生产性转运的监测,根据监测结果为优化船厂分段转运过程提出初步建议.
陈俊宇, 田凌 . 基于船厂分段时空数据的分段状态识别及转运监测[J]. 上海交通大学学报, 2023 , 57(1) : 24 -35 . DOI: 10.16183/j.cnki.jsjtu.2021.287
Ship block transfer is important to the orderly flow of blocks between crafts, which is costly. Shipyard managers have to monitor the actual transfers, especially the unproductive transfers that occur when blocks are obstructed or reworked. A high-load shipyard, called S, often uses one site for multiple purposes, and the difficulties in obtaining the state of ship blocks through the time-site data of blocks provided by the existing monitoring technology make it difficult to monitor two types of unproductive transfers. To address this problem, four hidden Markov models whose parameters are calculated by a supervised approach are proposed, and a Viterbi algorithm based method is proposed to identify the state of blocks, achieving an accuracy of up to 93.5% on the test dataset. One of the hidden Markov models is applied to the time-site data of blocks to monitor two types of unproductive transfers in shipyards. Preliminary suggestions for improving the blocks transfer process based on monitoring results are proposed.
[1] | KIM K T, KIM H J, CHOI S H. Heuristic algorithms for assigning ship assembly blocks to storage locations at a shipyard[J]. Journal of International Logistics & Trade, 2017, 15(3): 83-90. |
[2] | PARK C, SEO J. Assembly block storage location assignment problem: Revisited[J]. Production Planning & Control, 2009, 20(3): 216-226. |
[3] | 陶宁蓉, 蒋祖华, 刘建峰. 带时间窗约束的船体分段空间调度问题[J]. 计算机集成制造系统, 2010, 16(12): 2674-2679. |
[3] | TAO Ningrong, JIANG Zuhua, LIU Jianfeng. Spatial scheduling problem with time window constraint for block assembly in shipbuilding[J]. Computer Integrated Manufacturing Systems, 2010, 16(12): 2674-2679. |
[4] | 陶宁蓉. 船舶分段建造过程中的资源调度优化研究[D]. 上海: 上海交通大学, 2013. |
[4] | TAO Ningrong. Research on resource scheduling problems during ship block assembly process[D]. Shanghai: Shanghai Jiao Tong University, 2013. |
[5] | 陈凯, 蒋祖华, 刘建峰, 等. 带有进场时间窗的船舶分段堆场调度[J]. 上海交通大学学报, 2016, 50 (9): 1390-1398. |
[5] | CHEN K, JIANG ZH, LIU JF, et al. Shipbuilding yard scheduling with block inbound time window[J]. Journal of Shanghai Jiao Tong University, 2016, 50 (9): 1390-1398. |
[6] | 李柏鹤, 蒋祖华, 陶宁蓉, 等. 基于混合优化算法的船舶分段堆场间调度研究[J]. 哈尔滨工程大学学报, 2018, 39 (12): 2025-2032. |
[6] | LI Baihe, JIANG Zuhua, TAO Ningrong, et al. Research on dispatch of blocks between stockyards based on hybrid optimization algorithm[J]. Journal of Harbin Engineering University, 2018, 39(12): 2025-2032. |
[7] | 李柏鹤, 蒋祖华, 陶宁蓉, 等. 考虑平板车合作运输的船舶分段堆场间调度[J]. 上海交通大学学报, 2020, 54(7): 718-727. |
[7] | LI Baihe, JIANG Zuhua, TAO Ningrong, et al. Ship block transportation scheduling considering cooperative transportation of flatcars[J]. Journal of Shanghai Jiao Tong University, 2020, 54(7): 718-727. |
[8] | MUN S, AN J, LEE J. Real time transporter locating system for shipyard through GNSS and IMU sensor[J]. Journal of the Society of Naval Architects of Korea, 2019, 56(5): 439-446. |
[9] | PARK J G, OH J S, LEE S R, et al. Location determination system for transport path optimization of block transporter[J]. The Journal of Korea Information and Communications Society, 2014, 39C(7): 589-596. |
[10] | SONG K S, LEE S, CHO D Y. Smart device based localization for ship block logistics[J]. Journal of Korea Multimedia Society, 2012, 15(12): 1506-1516. |
[11] | CHA J H, CHO D Y, RUY W S, et al. Development of optimal planning system for operating transporters in shipyard[J]. Korean Journal of Computational Design and Engineering, 2016, 21(2): 177-185. |
[12] | 张恒, 向祖权, 王冲, 等. 船体分段外场物流实时综合监控系统[J]. 造船技术, 2019(4): 83-88. |
[12] | ZHANG Heng, XIANG Zuquan, WANG Chong, et al. Real-time integrated monitoring system of hull block outfield logistics[J]. Marine Technology, 2019(4): 83-88, 92. |
[13] | LEE S K, KIM B, HUH M, et al. Mining transportation logs for understanding the after-assembly block manufacturing process in the shipbuilding industry[J]. Expert Systems With Applications, 2013, 40(1): 83-95. |
[14] | VAN DER AALST W M P, VAN DONGEN B F, HERBST J, et al. Workflow mining: A survey of issues and approaches[J]. Data & Knowledge Engineering, 2003, 47(2): 237-267. |
[15] | VAN DER AALST W M P, WEIJTERS A J M M. Process mining: A research agenda[J]. Computers in Industry, 2004, 53(3): 231-244. |
[16] | VAN DER AALST W, WEIJTERS T, MARUSTER L. Workflow mining: Discovering process models from event logs[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1128-1142. |
[17] | 陈好楠, 杨勇, 周同明, 等. 基于层次聚类的船舶建造分段运输日志分析[J]. 造船技术, 2020(4): 79-84. |
[17] | CHEN Haonan, YANG Yong, ZHOU Tongming, et al. Analysis of shipbuilding block assembly transportation log based on hierarchical clustering[J]. Marine Technology, 2020(4): 79-84. |
[18] | RUSSELL S J, NORVIG P. Artificial intelligence: A modern approach[M]. 3rd ed. Upper Saddle River, New Jersey: Pearson Education, Inc., 2010. |
[19] | BAUM L E, PETRIE T, SOULES G, et al. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[J]. The Annals of Mathematical Statistics, 1970, 41(1): 164-171. |
[20] | VITERBI A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[J]. IEEE Transactions on Information Theory, 1967, 13(2): 260-269. |
[21] | RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. |
[22] | BAUM L E, PETRIE T. Statistical inference for probabilistic functions of finite state Markov chains[J]. The Annals of Mathematical Statistics, 1966, 37(6): 1554-1563. |
/
〈 |
|
〉 |